Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers

In this article, we give a unified theory for constructing boundary layer expansions for dis-cretized transport equations with homogeneous Dirichlet boundary conditions. We exhibit a natural assumption on the discretization under which the numerical solution can be written approximately as a two-scale boundary layer expansion. In particular, this expansion yields discrete semigroup estimates that are compatible with the continuous semigroup estimates in the limit where the space and time steps tend to zero. The novelty of our approach is to cover numerical schemes with arbitrarily many time levels, while semigroup estimates were restricted, up to now, to numerical schemes with two time levels only.

[1]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[2]  H. Kreiss Stability theory for difference approximations of mixed initial boundary value problems. I , 1968 .

[3]  H. Kreiss Initial boundary value problems for hyperbolic systems , 1970 .

[4]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[5]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[6]  E. Tadmor,et al.  Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1978 .

[7]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[8]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[9]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[10]  C. Lubich,et al.  On resolvent conditions and stability estimates , 1991 .

[11]  The semigroup stability of the difference approximations for initial-boundary value problems , 1995 .

[12]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[13]  Denis Serre,et al.  Conditions aux limites pour un système strictement hyperbolique fournies, par le schéma de Godunov , 1997 .

[14]  Claire Chainais-Hillairet,et al.  NUMERICAL BOUNDARY LAYERS FOR HYPERBOLIC SYSTEMS IN 1-D , 2001 .

[15]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[16]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[17]  D. Gérard-Varet Formal Derivation of Boundary Layers in Fluid Mechanics , 2005 .

[18]  L. Trefethen Spectra and pseudospectra , 2005 .

[19]  Jean-François Coulombel,et al.  Well-posedness of hyperbolic initial boundary value problems , 2005 .

[20]  Jean-François Coulombel,et al.  Stability of Finite Difference Schemes for Hyperbolic Initial Boundary Value Problems , 2009, SIAM J. Numer. Anal..

[21]  Eitan Tadmor,et al.  Scheme-Independent Stability Criteria for Difference Approximations of Hyperbolic Initial-Boundary Value Problems , 2010 .

[22]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[23]  Antoine Gloria,et al.  Semigroup stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems , 2010, Math. Comput..

[24]  Eric Walter,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[25]  Jean-Franccois Coulombel,et al.  The Leray-G{\aa}rding method for finite difference schemes , 2015, 1505.06060.

[26]  G. Métivier On the L^2 well posedness of Hyperbolic Initial Boundary Value Problems@@@Sur le problème mixte hyperbolique dans L^2 , 2017 .