The inner equation for one and a half degrees of freedom rapidly forced Hamiltonian systems

We consider families of one and a half degrees of freedom rapidly forced Hamiltonian systems which are perturbations of one degree of freedom Hamiltonians with a homoclinic connection. We derive the inner equation for this class of Hamiltonian system which is expressed as the Hamiltonian–Jacobi equation of a one a half degrees of freedom Hamiltonian. The inner equation depends on a parameter not necessarily small.We prove the existence of special solutions of the inner equation with a given behaviour at infinity. We also compute the asymptotic expression for the difference between these solutions. In some perturbative cases, this asymptotic expression is strongly related with the Melnikov function associated with our initial Hamiltonian.

[1]  V. F. Lazutkin,et al.  Splitting of Separatrices for the Chirikov Standard Map , 2005 .

[2]  Sigurd B. Angenent,et al.  A variational interpretation of Melnikov's function and exponentially small separatrix splitting , 1994 .

[3]  Carles Simó,et al.  The splitting of separatrices for analytic diffeomorphisms , 1990, Ergodic Theory and Dynamical Systems.

[4]  Ernest Fontich Rapidly Forced Planar Vector Fields and Splitting of Separatrices , 1995 .

[5]  V. G. Gelfreich,et al.  A Proof of the Exponentially Small Transversality of the Separatrices for the Standard Map , 1999 .

[6]  Tere M. Seara,et al.  Splitting of Separatrices in Hamiltonian Systems with one and a half Degrees of Freedom , 1997 .

[7]  H. Poincaré,et al.  Erratum zu: Etude des surfaces asymptotiques , 1890 .

[8]  A. Valdés,et al.  Exponentially Small Splitting of Separatrices for Perturbed Integrable Standard-Like Maps , 1998 .

[9]  Ernest Fontich,et al.  Exponentially Small Splitting of Invariant Manifolds of Parabolic Points , 2004 .

[10]  David Sauzin,et al.  Borel summation and splitting of separatrices for the Hénon map , 2001 .

[11]  Jerrold E. Marsden,et al.  Exponentially Small Estimates for Separatrix Splittings , 1991 .

[12]  Amadeu Delshams Valdés,et al.  Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom , 1997 .

[13]  Tere M. Seara,et al.  Adiabatic invariant of the harmonic oscillator, complex matching and resurgence , 1998 .

[14]  V. G. Gelfreich,et al.  Melnikov method and exponentially small splitting of separatrices , 1997 .

[15]  Ernest Fontich Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations , 1993 .

[16]  F. Pham,et al.  Approche de la résurgence , 1993 .

[17]  David Sauzin,et al.  Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé , 1995 .

[18]  Giulio Bisconcini,et al.  Sur le problème des trois corps , 1906 .

[19]  Tere M. Seara,et al.  Resurgence in a Hamilton-Jacobi equation , 2003 .

[20]  T. M. Seara,et al.  An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum , 1992 .

[21]  Jerrold E. Marsden,et al.  Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations , 1988 .

[22]  David Sauzin,et al.  A new method for measuring the splitting of invariant manifolds , 2001 .