Collecte et stockage de données à large échelle par des véhicules intelligents : une approche centrée sur le contenu. (Large Scale Data Collection and Storage Using Smart Vehicles : An Information-centric Approach )

De nos jours, Le nombre de dispositifs ne cesse d’augmenter ce qui induit une forte demande des applications en donnees multimedia. Cependant gerer des donnees massives generees et consommees par les utilisateurs mobiles dans une zone urbaine reste une problematique de taille pour les reseaux cellulaires existants qui sont a la fois limites en termes de cout et de bande passante mais aussi due a la nature de telles donnees centrees- connexion. D’autre part, l’avancee technologique en matiere de vehicules autonomes permet de constituer une infrastructure prometteuse capable de prendre en charge le traitement, la sauvegarde, et la communication de ces donnees. En effet, Il est maintenant possible de recruter des vehicules intelligents pour des fins de collecte, de stockage, et de partage des donnees heterogenes en provenance d’un reseau routier afin de repondre aux demandes des citoyens via des applications. Par consequent, nous tirons profit de l'evolution recente en « information Centric Networking » ICN afin d'introduire deux nouvelles approches de collecte et de stockage de contenu par les vehicules, nommees respectivement VISIT et SAVING, plus efficaces et plus proches de l'utilisateur mobile en zone urbaine ainsi nous remedions aux problemes lies a la bande passante et le cout. VISIT est une plate-forme qui definit de nouvelles mesures de centralite basees sur l'interet social des citoyens afin d’identifier et de selectionner l'ensemble approprie des meilleurs vehicules candidats pour la collecte des donnees urbaines. SAVING est un systeme de stockage de donnees sociales, qui presente une solution de mise en cache des donnees d’une facon collaborative entre un ensemble de vehicules parmi d’autres designes et recrutes selon une strategie des theorie des jeux basee sur les reseaux complexes. Nous avons teste ces deux methodes VISIT et SAVING sur des donnees simulees pour environ 2986 vehicules avec des traces de mobilite realistes en zone urbaine, et les resultats ont prouves que les deux methodes permettent non seulement une collecte et un stockage efficaces mais aussi bien scalables

[1]  Victor C. M. Leung,et al.  Information-Centric Networking for VANETs , 2015 .

[2]  Stephen P. Borgatti,et al.  Centrality and network flow , 2005, Soc. Networks.

[3]  Jie Wu,et al.  Opportunistic WiFi offloading in a vehicular environment: Waiting or downloading now? , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[4]  Sheng Chen,et al.  Coding or Not: Optimal Mobile Data Offloading in Opportunistic Vehicular Networks , 2014, IEEE Transactions on Intelligent Transportation Systems.

[5]  Yacine Ghamri-Doudane,et al.  Car Rank: An Information-Centric Identification of Important Smart Vehicles for Urban Sensing , 2015, 2015 IEEE 14th International Symposium on Network Computing and Applications.

[6]  Qian Zhang,et al.  Compressive sensing based monitoring with vehicular networks , 2013, 2013 Proceedings IEEE INFOCOM.

[7]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[8]  Aravind Srinivasan,et al.  Mobile Data Offloading through Opportunistic Communications and Social Participation , 2012, IEEE Transactions on Mobile Computing.

[9]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[10]  Anna Maria Vegni,et al.  A Survey on Vehicular Social Networks , 2015, IEEE Communications Surveys & Tutorials.

[11]  George C. Polyzos,et al.  Caching and mobility support in a publish-subscribe internet architecture , 2012, IEEE Communications Magazine.

[12]  Yacine Ghamri-Doudane,et al.  GRank - An Information-Centric Autonomous and Distributed Ranking of Popular Smart Vehicles , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[13]  Jon Crowcroft,et al.  ML-SOR: Message routing using multi-layer social networks in opportunistic communications , 2015, Comput. Networks.

[14]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[15]  Xiang-Yang Li,et al.  Opportunistic coverage for urban vehicular sensing , 2015, Comput. Commun..

[16]  Ernesto Estrada,et al.  Communicability in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Marco Fiore,et al.  Generation and Analysis of a Large-Scale Urban Vehicular Mobility Dataset , 2014, IEEE Transactions on Mobile Computing.

[18]  Marcelo Dias de Amorim,et al.  Data offloading in social mobile networks through VIP delegation , 2014, Ad Hoc Networks.

[19]  Sheng Chen,et al.  Multiple Mobile Data Offloading Through Disruption Tolerant Networks , 2014, IEEE Transactions on Mobile Computing.

[20]  Paolo Bellavista,et al.  Mobeyes: smart mobs for urban monitoring with a vehicular sensor network , 2006, IEEE Wireless Communications.

[21]  Mario Gerla,et al.  Social caching and content retrieval in Disruption Tolerant Networks (DTNs) , 2015, 2015 International Conference on Computing, Networking and Communications (ICNC).

[22]  Yacine Ghamri-Doudane,et al.  InfoRank: Information-Centric Autonomous Identification of Popular Smart Vehicles , 2015, 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall).

[23]  Yacine Ghamri-Doudane,et al.  SAVING: socially aware vehicular information-centric networking , 2016, IEEE Communications Magazine.

[24]  George Pavlou,et al.  Cache "Less for More" in Information-Centric Networks , 2012, Networking.

[25]  Qun Li,et al.  A Survey of Fog Computing: Concepts, Applications and Issues , 2015, Mobidata@MobiHoc.

[26]  Thrasyvoulos Spyropoulos,et al.  Inferring content-centric traffic for opportunistic networking from geo-location Social Networks , 2015, 2015 IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM).

[27]  Antonella Molinaro,et al.  Content-centric wireless networking: A survey , 2014, Comput. Networks.

[28]  Hossam S. Hassanein,et al.  Optimal recruitment of smart vehicles for reputation-aware public sensing , 2014, 2014 IEEE Wireless Communications and Networking Conference (WCNC).

[29]  Jiannong Cao,et al.  High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[30]  Ch. Ramesh Babu,et al.  Internet of Vehicles: From Intelligent Grid to Autonomous Cars and Vehicular Clouds , 2016 .

[31]  Swarun Kumar,et al.  CarSpeak: a content-centric network for autonomous driving , 2012, SIGCOMM '12.

[32]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[33]  Deshi Li,et al.  A Self-Adaptive Behavior-Aware Recruitment Scheme for Participatory Sensing , 2015, Sensors.

[34]  Bengt Ahlgren,et al.  A survey of information-centric networking , 2012, IEEE Communications Magazine.

[35]  Pan Hui,et al.  BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks , 2011 .

[36]  Steve Uhlig,et al.  Design and Evaluation of the Optimal Cache Allocation for Content-Centric Networking , 2016, IEEE Transactions on Computers.

[37]  Raffaele Bruno,et al.  Efficient data collection in multimedia vehicular sensing platforms , 2013, Pervasive Mob. Comput..

[38]  Marco Conti,et al.  Data Offloading Techniques in Cellular Networks: A Survey , 2015, IEEE Communications Surveys & Tutorials.

[39]  Yang Zhang,et al.  CarTel: a distributed mobile sensor computing system , 2006, SenSys '06.

[40]  Alexandros G. Dimakis,et al.  FemtoCaching: Wireless video content delivery through distributed caching helpers , 2011, 2012 Proceedings IEEE INFOCOM.

[41]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[42]  Deborah Estrin,et al.  Recruitment Framework for Participatory Sensing Data Collections , 2010, Pervasive.

[43]  Pan Hui,et al.  BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks , 2008, IEEE Transactions on Mobile Computing.

[44]  Ke Xu,et al.  A Survey of Social-Aware Routing Protocols in Delay Tolerant Networks: Applications, Taxonomy and Design-Related Issues , 2014, IEEE Communications Surveys & Tutorials.

[45]  Olivier Festor,et al.  A Comparison of Caching Strategies for Content Centric Networking , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[46]  Antonio Capone,et al.  Bandwidth and Cache Leasing in Wireless Information-Centric Networks: A Game-Theoretic Study , 2017, IEEE Transactions on Vehicular Technology.

[47]  He Chen,et al.  Pricing and Resource Allocation via Game Theory for a Small-Cell Video Caching System , 2016, IEEE Journal on Selected Areas in Communications.

[48]  Qinghua Li,et al.  Social-Based Cooperative Caching in DTNs: A Contact Duration Aware Approach , 2011, 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems.

[49]  Ning Wang,et al.  Decision-making for in-network caching of Peer-to-Peer content chunks - An analytical modelling study , 2014, 2014 International Conference and Workshop on the Network of the Future (NOF).

[50]  Olivier Festor,et al.  Socially-aware caching strategy for content centric networking , 2014, 2014 IFIP Networking Conference.

[51]  Lazaros Gkatzikis,et al.  Distributed Cache Management in Information-Centric Networks , 2013, IEEE Transactions on Network and Service Management.

[52]  Cédric Westphal,et al.  Congestion-aware edge caching for adaptive video streaming in Information-Centric Networks , 2015, 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC).

[53]  Yusheng Ji,et al.  Performance of probabilistic caching and cache replacement policies for Content-Centric Networks , 2014, 39th Annual IEEE Conference on Local Computer Networks.