On the chromatic number of random geometric graphs

AbstractGiven independent random points X1,...,Xn ∈ℝd with common probability distribution ν, and a positive distance r=r(n)>0, we construct a random geometric graph Gn with vertex set {1,..., n} where distinct i and j are adjacent when ‖Xi−Xj‖≤r. Here ‖·‖ may be any norm on ℝd, and ν may be any probability distribution on ℝd with a bounded density function. We consider the chromatic number χ(Gn) of Gn and its relation to the clique number ω(Gn) as n→∞. Both McDiarmid [11] and Penrose [15] considered the range of r when $$r \ll \left( {\tfrac{{\ln n}} {n}} \right)^{1/d}$$ and the range when $$r \gg \left( {\tfrac{{\ln n}} {n}} \right)^{1/d}$$ , and their results showed a dramatic difference between these two cases. Here we sharpen and extend the earlier results, and in particular we consider the ‘phase change’ range when $$r \sim \left( {\tfrac{{t\ln n}} {n}} \right)^{1/d}$$ with t>0 a fixed constant. Both [11] and [15] asked for the behaviour of the chromatic number in this range. We determine constants c(t) such that $$\tfrac{{\chi (G_n )}} {{nr^d }} \to c(t)$$ almost surely. Further, we find a “sharp threshold” (except for less interesting choices of the norm when the unit ball tiles d-space): there is a constant t0>0 such that if t≤t0 then $$\tfrac{{\chi (G_n )}} {{\omega (G_n )}}$$ tends to 1 almost surely, but if t>t0 then $$\tfrac{{\chi (G_n )}} {{\omega (G_n )}}$$ tends to a limit >1 almost surely.

[1]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[2]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[3]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[4]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[5]  Béla Bollobás,et al.  Random Graphs , 1985 .

[6]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[7]  Tobias Müller,et al.  Two-point concentration in random geometric graphs , 2008, Comb..

[8]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[11]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[12]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[13]  C. L. Mallows An inequality involving multinomial probabilities , 1968 .

[14]  M.J.P. Peeters,et al.  On coloring j-unit sphere graphs , 1991 .

[15]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[16]  Jörg M. Wills,et al.  Handbook of Convex Geometry , 1993 .

[17]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[18]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[19]  Jeremy P. Spinrad,et al.  Robust algorithms for restricted domains , 2001, SODA '01.

[20]  A. Gräf,et al.  On Coloring Unit Disk Graphs , 1998, Algorithmica.

[21]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[22]  Harry B. Hunt,et al.  Simple heuristics for unit disk graphs , 1995, Networks.

[23]  Colin McDiarmid,et al.  Random channel assignment in the plane , 2003, Random Struct. Algorithms.

[24]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[25]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[26]  E. Scheinerman,et al.  Fractional Graph Theory: A Rational Approach to the Theory of Graphs , 1997 .

[27]  János Pach,et al.  Combinatorial Geometry , 2012 .

[28]  P. Strevens Iii , 1985 .