The random discrete action for two-dimensional spacetime
暂无分享,去创建一个
Bernhard Schmitzer | Fay Dowker | Bernhard Schmitzer | Fay Dowker | Dionigi M. T. Benincasa | D. Benincasa
[1] Joe Henson,et al. QUANTUM GRAVITY PHENOMENOLOGY, LORENTZ INVARIANCE AND DISCRETENESS , 2003, gr-qc/0311055.
[2] Andrew King,et al. A new topology for curved space–time which incorporates the causal, differential, and conformal structures , 1976 .
[3] A. Avez,et al. Formule de Gauss-Bonnet-Chern en métrique de signature quelconque , 1963 .
[4] Bernhard Schmitzer. Curvature And Topology On Causal Sets , 2010 .
[5] D. Malament. The class of continuous timelike curves determines the topology of spacetime , 1977 .
[6] Peter R. Law. Neutral Geometry and the Gauss-Bonnet Theorem for Two-dimensional Pseudo-Riemannian Manifolds , 1992 .
[7] G. Hooft. Quantum Gravity: A Fundamental Problem and Some Radical Ideas , 1979 .
[8] K. Nomizu,et al. The Gauss-Bonnet theorem for $2$-dimensional spacetimes. , 1984 .
[9] R. Sorkin. Approaches to Quantum Gravity: Does locality fail at intermediate length scales? , 2007, gr-qc/0703099.
[10] Rafael D. Sorkin,et al. Complex actions in two-dimensional topology change , 1997 .
[11] Bombelli,et al. Space-time as a causal set. , 1987, Physical review letters.
[12] Fay Dowker,et al. Scalar curvature of a causal set. , 2010, Physical review letters.