Inhibitor binding mode and allosteric regulation of Na+-glucose symporters

[1]  W. Y. Wahlgren,et al.  Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site , 2018, Nature Communications.

[2]  Antoniya A. Aleksandrova,et al.  Structural elements required for coupling ion and substrate transport in the neurotransmitter transporter homolog LeuT , 2018, Proceedings of the National Academy of Sciences.

[3]  Paola Bisignano,et al.  Conformational transitions of the sodium-dependent sugar transporter, vSGLT , 2018, Proceedings of the National Academy of Sciences.

[4]  D. Loo,et al.  Active site voltage clamp fluorometry of the sodium glucose cotransporter hSGLT1 , 2017, Proceedings of the National Academy of Sciences.

[5]  C. Lau,et al.  Concise and Stereodivergent Synthesis of Carbasugars Reveals Unexpected Structure-Activity Relationship (SAR) of SGLT2 Inhibition , 2017, Scientific Reports.

[6]  J. Lapointe,et al.  Characterization of the transport activity of SGLT2/MAP17, the renal low-affinity Na+-glucose cotransporter. , 2017, American journal of physiology. Renal physiology.

[7]  R. Vandenberg,et al.  Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2 , 2016, PloS one.

[8]  D. Loo,et al.  Stochastic steps in secondary active sugar transport , 2016, Proceedings of the National Academy of Sciences.

[9]  Jennifer L. Knight,et al.  OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. , 2016, Journal of chemical theory and computation.

[10]  B. Zinman,et al.  Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. , 2015, The New England journal of medicine.

[11]  S. Mudaliar,et al.  Sodium–Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport , 2015, Diabetes Care.

[12]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[13]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[14]  E. Wright,et al.  Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences , 2015, Diabetes & vascular disease research.

[15]  Benoît Roux,et al.  Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1 , 2014, Proceedings of the National Academy of Sciences.

[16]  D. Loo,et al.  SGLT2 inhibitors act from the extracellular surface of the cell membrane , 2014, Physiological reports.

[17]  Benjamin D. Madej,et al.  Lipid14: The Amber Lipid Force Field , 2014, Journal of chemical theory and computation.

[18]  D. Loo,et al.  Functional identification and characterization of sodium binding sites in Na symporters , 2013, Proceedings of the National Academy of Sciences.

[19]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[20]  C. Perez,et al.  Structural evidence for functional lipid interactions in the betaine transporter BetP , 2013, The EMBO journal.

[21]  Xuan Jiang,et al.  The importance of being aromatic: π interactions in sodium symporters. , 2012, Biochemistry.

[22]  Matthias Quick,et al.  Investigation of the sodium-binding sites in the sodium-coupled betaine transporter BetP , 2012, Proceedings of the National Academy of Sciences.

[23]  Özkan Yildiz,et al.  Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP , 2012, Nature.

[24]  D. Loo,et al.  Bridging the gap between structure and kinetics of human SGLT1. , 2012, American journal of physiology. Cell physiology.

[25]  D. Loo,et al.  Structural selectivity of human SGLT inhibitors. , 2012, American journal of physiology. Cell physiology.

[26]  Harini Krishnamurthy,et al.  X-ray structures of LeuT in substrate-free outward-open and apo inward-open states , 2012, Nature.

[27]  R. Friesner,et al.  The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling , 2011, Proteins.

[28]  Ivet Bahar,et al.  ProDy: Protein Dynamics Inferred from Theory and Experiments , 2011, Bioinform..

[29]  D. Loo,et al.  Biology of human sodium glucose transporters. , 2011, Physiological reviews.

[30]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[31]  Michael Grabe,et al.  The mechanism of sodium and substrate release from the binding pocket of vSGLT , 2010, Nature.

[32]  Harel Weinstein,et al.  Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters , 2010, Nature Structural &Molecular Biology.

[33]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[34]  S. Iwata,et al.  Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1 , 2010, Science.

[35]  Dongbing Zhao,et al.  Synthesis of phenol, aromatic ether, and benzofuran derivatives by copper-catalyzed hydroxylation of aryl halides. , 2009, Angewandte Chemie.

[36]  Shunsuke Yajima,et al.  Structure and Molecular Mechanism of a Nucleobase–Cation–Symport-1 Family Transporter , 2008, Science.

[37]  D. Cascio,et al.  The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar Symport , 2008, Science.

[38]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[39]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[40]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.

[41]  D. Loo,et al.  Conformational Dynamics of hSGLT1 during Na+/Glucose Cotransport , 2006, The Journal of general physiology.

[42]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[43]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[44]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[45]  Conrad C. Huang,et al.  Tools for integrated sequence-structure analysis with UCSF Chimera , 2006, BMC Bioinformatics.

[46]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[47]  R. Friesner,et al.  Novel procedure for modeling ligand/receptor induced fit effects. , 2006, Journal of medicinal chemistry.

[48]  Eric Gouaux,et al.  Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters , 2005, Nature.

[49]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[50]  J. Ehrich,et al.  Long-term outcome of renal glucosuria type 0: the original patient and his natural history. , 2004, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[51]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[52]  Hege S. Beard,et al.  Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. , 2004, Journal of medicinal chemistry.

[53]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[54]  E. Wright,et al.  The sodium/glucose cotransport family SLC5 , 2004, Pflügers Archiv.

[55]  Marjorie M. Harding,et al.  Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. , 2002, Acta crystallographica. Section D, Biological crystallography.

[56]  P. Kollman,et al.  Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding , 2000 .

[57]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[58]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[59]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[60]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[61]  E. Wright,et al.  Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. , 1992, The American journal of physiology.

[62]  E. Wright,et al.  Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Eugene W. Myers,et al.  Optimal alignments in linear space , 1988, Comput. Appl. Biosci..

[64]  N Go,et al.  Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. , 1985, Journal of molecular biology.

[65]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[66]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[67]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[68]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[69]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[70]  D. Bichet,et al.  MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2. , 2017, Journal of the American Society of Nephrology : JASN.

[71]  D. Loo,et al.  Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. , 2011, American journal of physiology. Cell physiology.

[72]  E. Wright,et al.  The sodium/glucose cotransport family SLC5 , 2003, Pflügers Archiv.

[73]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..