General method for the synthesis of hierarchical nanocrystal-based mesoporous materials.

Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn(3)O(4) is demonstrated here.

[1]  Thierry Gacoin,et al.  Structural study of 3D-hexagonal mesoporous spin-coated sol–gel films , 2000 .

[2]  A. Rogach,et al.  Colloidal synthesis and self-assembly of CoPt(3) nanocrystals. , 2002, Journal of the American Chemical Society.

[3]  Galo J. A. A. Soler-Illia,et al.  Nanocrystallised titania and zirconia mesoporous thin films exhibiting enhanced thermal stability , 2003 .

[4]  Thomas H. Epps,et al.  Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols. , 2009, Chemistry of materials : a publication of the American Chemical Society.

[5]  Andrew A. Burns,et al.  A silica sol-gel design strategy for nanostructured metallic materials. , 2012, Nature materials.

[6]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[7]  Yongan Yang,et al.  Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. , 2008, Angewandte Chemie.

[8]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[9]  John Wang,et al.  Ordered mesoporous α-Fe2O3 (hematite) thin-film electrodes for application in high rate rechargeable lithium batteries. , 2011, Small.

[10]  M. Lindén,et al.  Hierarchical inorganic nanopatterning (INP) through direct easy block-copolymer templating , 2009 .

[11]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[12]  YanagisawaTsuneo,et al.  The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials , 2006 .

[13]  G. Ozin,et al.  Synthesis of oriented films of mesoporous silica on mica , 1996, Nature.

[14]  F. Bates,et al.  Synthesis and Characterization of Model Polyalkane−Poly(ethylene oxide) Block Copolymers , 1996 .

[15]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[16]  Avelino Corma,et al.  Hierarchically mesostructured doped CeO2 with potential for solar-cell use , 2004, Nature materials.

[17]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[18]  O. Takai,et al.  Atmospheric plasma-calcination of mesoporous tungsten oxide utilizing plasma dielectric barrier discharge , 2007 .

[19]  Shouheng Sun,et al.  Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) , 1999 .

[20]  T. Richardson,et al.  Assembly of ligand-stripped nanocrystals into precisely controlled mesoporous architectures. , 2012, Nano letters (Print).

[21]  S. Tolbert,et al.  Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters , 2006, Nature.

[22]  R. Seshadri,et al.  Magnetic properties of capped, soluble MnFe2O4 nanoparticles , 2005 .

[23]  C. Summers,et al.  Synthesis of a Nonagglomerated Indium Tin Oxide Nanoparticle Dispersion , 2008 .

[24]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[25]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[26]  Q. Huo,et al.  Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures , 1993, Science.

[27]  U. Wiesner,et al.  Control of Solid‐State Dye‐Sensitized Solar Cell Performance by Block‐Copolymer‐Directed TiO2 Synthesis , 2010 .

[28]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[29]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[30]  M. R. Baklanov,et al.  Determination of pore size distribution in thin films by ellipsometric porosimetry , 2000 .

[31]  Raffaella Buonsanti,et al.  Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. , 2012, Angewandte Chemie.

[32]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[33]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[34]  W. Moon,et al.  Various-Shaped Uniform Mn3O4 Nanocrystals Synthesized at Low Temperature in Air Atmosphere , 2009 .

[35]  S. Tolbert,et al.  Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films. , 2008, Nano letters.

[36]  D. Zhao,et al.  Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. , 2007, Journal of the American Chemical Society.

[37]  D. Schleich,et al.  Preparation of some metal ferrite MFe2O4 thin films through a nonaqueous sol method , 1995 .

[38]  Yoshiaki Fukushima,et al.  Synthesis of highly ordered mesoporous materials from a layered polysilicate , 1993 .

[39]  Younan Xia,et al.  Shape‐Controlled Synthesis of Gold and Silver Nanoparticles. , 2003 .

[40]  M. Antonietti,et al.  Crystal-to-crystal phase transition in self-assembled mesoporous iron oxide films. , 2006, Angewandte Chemie.

[41]  T. Brezesinski,et al.  Ordered mesoporous MFe(2)O(4) (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite. , 2010, Inorganic chemistry.

[42]  P. Albouy,et al.  Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides , 2004, Nature materials.

[43]  B. Dunn,et al.  On the correlation between mechanical flexibility, nanoscale structure, and charge storage in periodic mesoporous CeO(2) thin films. , 2010, ACS nano.

[44]  M. Antonietti,et al.  Non‐aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures , 2005 .

[45]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[46]  Jinwoo Lee,et al.  Nanostructured carbon-crystalline titania composites from microphase separation of poly(ethylene oxide-b-acrylonitrile) and titania sols. , 2009, Chemical communications.

[47]  J. Ying,et al.  Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method , 1995 .

[48]  U. Steiner,et al.  Nanostructured Calcite Single Crystals with Gyroid Morphologies , 2009 .

[49]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[50]  J. Gutmann,et al.  Morphology phase diagram of ultrathin anatase TiO2 films templated by a single PS-b-PEO block copolymer. , 2006, Journal of the American Chemical Society.

[51]  Markus Antonietti,et al.  Tailoring the Surface and Solubility Properties of Nanocrystalline Titania by a Nonaqueous In Situ Functionalization Process , 2004 .

[52]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[53]  John Wang,et al.  Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. , 2010, Journal of the American Chemical Society.

[54]  Aaron T. Hammack,et al.  Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films , 2011 .

[55]  T. Brezesinski,et al.  Structural, Optical, and Magnetic Properties of Highly Ordered Mesoporous MCr2O4 and MCr2–xFexO4 (M = Co, Zn) Spinel Thin Films with Uniform 15 nm Diameter Pores and Tunable Nanocrystalline Domain Sizes , 2012 .

[56]  M. Antonietti,et al.  Controlled assembly of preformed ceria nanocrystals into highly ordered 3D nanostructures. , 2005, Small.

[57]  Christopher B. Murray,et al.  Synthesis of Colloidal PbSe/PbS Core−Shell Nanowires and PbS/Au Nanowire−Nanocrystal Heterostructures , 2007 .

[58]  Yujing Liu,et al.  Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion. , 2010, Journal of the American Chemical Society.

[59]  G. Stucky,et al.  Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles , 2002 .

[60]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[61]  S. Gruner,et al.  Morphology Diagram of a Diblock Copolymer−Aluminosilicate Nanoparticle System , 2009 .

[62]  Sol M Gruner,et al.  Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly , 2008, Science.

[63]  B. Park,et al.  Preparation and Optical Properties of Colloidal, Monodisperse, and Highly Crystalline ITO Nanoparticles , 2008 .

[64]  Bruce Dunn,et al.  Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating , 1997, Nature.

[65]  K. Kuroda,et al.  The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. , 1990 .

[66]  M. Antonietti,et al.  Evaporation‐Induced Self‐Assembly (EISA) at Its Limit: Ultrathin, Crystalline Patterns by Templating of Micellar Monolayers , 2006 .

[67]  Louis A. Cuccia,et al.  Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. , 2006, Journal of the American Chemical Society.

[68]  Y. Qian,et al.  Preparation and phase transformation of nanocrystalline copper sulfides (Cu9S8, Cu7S4 and CuS) at low temperature , 2000 .

[69]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[70]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[71]  S. Tanaka,et al.  Low-index mesoporous silica films modified with trimethylethoxysilane , 2008 .

[72]  T. Brezesinski,et al.  Electrochromic Stability of WO3 Thin Films with Nanometer-Scale Periodicity and Varying Degrees of Crystallinity , 2007 .

[73]  S. Tolbert,et al.  On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. , 2010, Nano letters.

[74]  M. Ogawa Formation of Novel Oriented Transparent Films of Layered Silica-Surfactant Nanocomposites , 1994 .

[75]  I. Chernyshova,et al.  Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. , 2007, Physical chemistry chemical physics : PCCP.

[76]  D. Zhao,et al.  Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs , 2003, Nature materials.

[77]  P. Rice,et al.  Oriented mesoporous organosilicate thin films. , 2005, Nano letters.

[78]  U. Wiesner,et al.  Organically modified aluminosilicate mesostructures from block copolymer phases , 1997, Science.

[79]  David Grosso,et al.  Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. , 2003, Journal of the American Chemical Society.

[80]  Deng,et al.  Hierarchically ordered oxides , 1998, Science.

[81]  L. Willner,et al.  Synthesis and Characterization of Poly[1,4-isoprene-b-(ethylene oxide)] and Poly[ethylene-co-propylene-b-(ethylene oxide)] Block Copolymers , 1997 .