Option Pricing for Pure Jump Processes with Markov Switching Compensators

This paper proposes a model for asset prices which is the exponential of a pure jump process with an N-state Markov switching compensator. We argue that such a process has a good chance of capturing all the empirical stylized regularities of stock price dynamics and we provide a closed form representation of its characteristic function. We also provide a parsimonious representation of the (not necessarily unique) risk neutral density and show how to price and hedge a large class of options on assets whose prices follow this process.

[1]  Robert J. Elliott,et al.  American options with regime switching , 2002 .

[2]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[3]  Howard M. Taylor,et al.  On the Distribution of Stock Price Differences , 1967, Oper. Res..

[4]  Jun Yu,et al.  EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION , 2001, Econometric Theory.

[5]  J. Florens,et al.  GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS , 2000, Econometric Theory.

[6]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[7]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[8]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[9]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[10]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[11]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[12]  Robert J. Elliott,et al.  New finite-dimensional filters and smoothers for noisily observed Markov chains , 1993, IEEE Trans. Inf. Theory.

[13]  Dilip B. Madan,et al.  Option Pricing Using Variance Gamma Markov Chains , 2002 .

[14]  J. Florens,et al.  Série Scientifique Scientific Series 2003 s-02 Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions , 2002 .

[15]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[16]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[17]  Marc Yor,et al.  Time Changes for Lévy Processes , 2001 .

[18]  S. Csörgo Empirical characteristic functions , 1980 .

[19]  M. Schweizer Option hedging for semimartingales , 1991 .

[20]  Kien C. Tran Estimating mixtures of normal distributions via empirical characteristic function , 1998 .

[21]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[22]  Robert J. Elliott,et al.  DISCONTINUOUS ASSET PRICES AND NON-ATTAINABLE CONTINGENT CLAIMS , 1993 .