Sintering of MgO-based refractories with added WO3
暂无分享,去创建一个
Y. Li | B. Han | Nan Li | Fan-Shiong Chen | Chengcheng Guo
[1] William E Lee,et al. Thermochemistry and microstructures of MgO–C refractories containing various antioxidants , 2001 .
[2] Wu Xinghui,et al. Electrical and gas-sensing properties of WO3 semiconductor material , 2001 .
[3] G. Centi. Other catalytic properties , 2000 .
[4] G. Banerjee,et al. Secondary phases in natural magnesite sintered with addition of titania, ilmenite and zirconia , 1999 .
[5] William E Lee,et al. Melt corrosion of oxide and oxide–carbon refractories , 1999 .
[6] Y. B. Lee,et al. Sintering and microstructure development in the system MgO–TiO2 , 1998 .
[7] J. T. Chen,et al. Growth of MgWO4 phosphor by RF magnetron sputtering , 1998 .
[8] O. J. Kleppa,et al. Enthalpies of formation from the component oxides of MgWO4, CaWO4 (scheelite), SrWO4, and BaWO4, determined by high-temperature direct synthesis calorimetry , 1996 .
[9] N. Petric,et al. Effect of TiO2, SiO2 and Al2O3 on properties of sintered magnesium oxide from sea water , 1996 .
[10] S. Fukuda,et al. Grain Size Effect on Mechanical Strength of MgO-ZrO2 Composite Ceramics , 1992 .
[11] G. V. Srinivasan,et al. Dual-phase magnesia-zirconia ceramics with strength retention at elevated temperatures , 1989 .
[12] J. R. Günter,et al. “High-temperature” magnesium tungstate, MgWO4, prepared at moderate temperature , 1988 .
[13] G. Blasse,et al. The luminescence of magnesium tungstate dihydrate, MgWO4·2H2O , 1987 .
[14] E. G. Baranov,et al. Effect of the method used to detonate the borehole charges on the breakdown characteristics , 1984 .