Sintering of MgO-based refractories with added WO3

[1]  William E Lee,et al.  Thermochemistry and microstructures of MgO–C refractories containing various antioxidants , 2001 .

[2]  Wu Xinghui,et al.  Electrical and gas-sensing properties of WO3 semiconductor material , 2001 .

[3]  G. Centi Other catalytic properties , 2000 .

[4]  G. Banerjee,et al.  Secondary phases in natural magnesite sintered with addition of titania, ilmenite and zirconia , 1999 .

[5]  William E Lee,et al.  Melt corrosion of oxide and oxide–carbon refractories , 1999 .

[6]  Y. B. Lee,et al.  Sintering and microstructure development in the system MgO–TiO2 , 1998 .

[7]  J. T. Chen,et al.  Growth of MgWO4 phosphor by RF magnetron sputtering , 1998 .

[8]  O. J. Kleppa,et al.  Enthalpies of formation from the component oxides of MgWO4, CaWO4 (scheelite), SrWO4, and BaWO4, determined by high-temperature direct synthesis calorimetry , 1996 .

[9]  N. Petric,et al.  Effect of TiO2, SiO2 and Al2O3 on properties of sintered magnesium oxide from sea water , 1996 .

[10]  S. Fukuda,et al.  Grain Size Effect on Mechanical Strength of MgO-ZrO2 Composite Ceramics , 1992 .

[11]  G. V. Srinivasan,et al.  Dual-phase magnesia-zirconia ceramics with strength retention at elevated temperatures , 1989 .

[12]  J. R. Günter,et al.  “High-temperature” magnesium tungstate, MgWO4, prepared at moderate temperature , 1988 .

[13]  G. Blasse,et al.  The luminescence of magnesium tungstate dihydrate, MgWO4·2H2O , 1987 .

[14]  E. G. Baranov,et al.  Effect of the method used to detonate the borehole charges on the breakdown characteristics , 1984 .