Interpolation d'attributs ondelettes pour l'indexation de bases d'images satellitaires à différentes résolutions

In this work, we propose a new method to compare wavelet features of images with different resolutions. By taking explicitely into account an acquisition model of satellite images, we compute the behaviour of wavelet features with respect to resolution changes.

[1]  Bin Luo,et al.  Characteristic Scale in Satellite Images , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[2]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Tieniu Tan,et al.  Affine invariant texture signatures , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[4]  Gilles Aubert,et al.  Wavelet-based level set evolution for classification of textured images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[5]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Bin Luo,et al.  Extrapolation of Wavelet Features for the Indexing of Satellite Images with Different Resolutions , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[7]  Gert Van De Wouwer,et al.  Wavelets For Multiscale Texture Analysis , 1998 .

[8]  S. Mallat A wavelet tour of signal processing , 1998 .

[9]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[10]  Chi-Man Pun,et al.  Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..