On thermodynamic consistency of a Scharfetter–Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement

Driven by applications like organic semiconductors there is an increased interest in numerical simulations based on drift-diffusion models with arbitrary statistical distribution functions. This requires numerical schemes that preserve qualitative properties of the solutions, such as positivity of densities, dissipativity and consistency with thermodynamic equilibrium. An extension of the Scharfetter–Gummel scheme guaranteeing consistency with thermodynamic equilibrium is studied. It is derived by replacing the thermal voltage with an averaged diffusion enhancement for which we provide a new explicit formula. This approach avoids solving the costly local nonlinear equations defining the current for generalized Scharfetter–Gummel schemes.

[1]  Onno W. Purbo,et al.  Numerical model for degenerate and heterostructure semiconductor devices , 1989 .

[2]  Klaus Gärtner,et al.  Discretization scheme for drift-diffusion equations with strong diffusion enhancement , 2012 .

[3]  A. Badinski,et al.  Numerical simulation of organic semiconductor devices with high carrier densities , 2012, 1208.3365.

[4]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[5]  K. Gärtner,et al.  Boundary conforming Delaunay mesh generation , 2010 .

[6]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[7]  R. H. MacNeal,et al.  An asymmetrical finite difference network , 1953 .

[8]  R. Coehoorn,et al.  Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors , 2008 .

[9]  Ansgar Jüngel Numerical Approximation of a Drift‐Diffusion Model for Semiconductors with Nonlinear Diffusion , 1995 .

[10]  Marianne Bessemoulin-Chatard,et al.  A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme , 2010, Numerische Mathematik.

[11]  J. S. Blakemore,et al.  The Parameters of Partially Degenerate Semiconductors , 1952 .

[12]  Robert Eymard,et al.  A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems , 2006, Numerische Mathematik.

[13]  Thomas Koprucki,et al.  Generalization of the Scharfetter-Gummel scheme , 2013, 2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).