New physics and devices based on self-assembled semiconductor quantum dots

Self-assembled semiconductor quantum dots (QDs) exhibit fully quantized electronic states and high radiative efficiencies. This makes them highly suitable both for fundamental physics studies of zero-dimensionality, atomic-like semiconductor systems and applications in a range of novel electro-optical devices. This review discusses recent important advances in the study and application of semiconductor QDs. Using a wide range of optical spectroscopy techniques, it is possible to obtain a detailed understanding of the electronic structure and dynamical carrier processes. Such an understanding is required for the implementation of a wide range of QD-based devices.

[1]  Dirk Reuter,et al.  Radiatively limited dephasing in InAs quantum dots , 2004 .

[2]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[3]  M. Asada,et al.  Gain and the threshold of three-dimensional quantum-box lasers , 1986 .

[4]  Bauer,et al.  Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots , 2000, Physical review letters.

[5]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[6]  M. S. Skolnick,et al.  Fine structure of charged and neutral excitons in InAs- Al 0.6 Ga 0.4 As quantum dots , 2002 .

[7]  B. Gerardot,et al.  Voltage-controlled optics of a quantum dot. , 2004, Physical review letters.

[8]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[9]  A. Zunger,et al.  Pseudopotential calculation of the excitonic fine structure of million-atom self-assembledIn1−xGaxAs/GaAsquantum dots , 2003 .

[10]  Dirk Reuter,et al.  Control of fine-structure splitting and biexciton binding in In x Ga 1 − x As quantum dots by annealing , 2004 .

[11]  Andrew J. Shields,et al.  Quantum dots as a photon source for passive quantum key encoding , 2002 .

[12]  G. Abstreiter,et al.  Electrical detection of optically induced charge storage in self-assembled InAs quantum dots , 1998 .

[13]  Y. Arakawa,et al.  Near-field coherent excitation spectroscopy of InGaAs/GaAs self-assembled quantum dots , 2000 .

[14]  David T. D. Childs,et al.  1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density , 2004 .

[15]  A. P. Vasil’ev,et al.  High performance quantum dot lasers on GaAs substrates operating in 1.5 /spl mu/m range , 2003 .

[16]  M. Hopkinson,et al.  Stacked low-growth-rate InAs quantum dots studied at the atomic level by cross-sectional scanning tunneling microscopy , 2003 .

[17]  Hiroshi Ishikawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s , 2001 .

[18]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[19]  M Rabe,et al.  Photon beats from a single semiconductor quantum dot. , 2001, Physical review letters.

[20]  A. Zunger,et al.  Electronic structure consequences of In/Ga composition variations in self-assembled In x Ga 1-x As/GaAs alloy quantum dots , 2001 .

[21]  Pawel Hawrylak,et al.  Response spectra from mid- to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors , 2003 .

[22]  P. G. Piva,et al.  Enhanced degradation resistance of quantum dot lasers to radiation damage , 2000 .

[23]  P. Petroff,et al.  Stark-shift modulation absorption spectroscopy of single quantum dots , 2003 .

[24]  Dennis G. Deppe,et al.  1.3 μm InAs quantum dot laser with To=161 K from 0 to 80 °C , 2002 .

[25]  M. N. Makhonin,et al.  Precise measurement of the fraction of charged dots in self-assembled quantum dot ensembles using ultrafast pump-probe techniques , 2004 .

[26]  Nikolai N. Ledentsov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain , 2003 .

[27]  Diana L. Huffaker,et al.  Spontaneous emission and threshold characteristics of 1.3-/spl mu/m InGaAs-GaAs quantum-dot GaAs-based lasers , 1999 .

[28]  M. S. Skolnick,et al.  Quantum-confined Stark shifts of charged exciton complexes in quantum dots , 2004 .

[29]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[30]  Johann Peter Reithmaier,et al.  ELECTRON AND HOLE G FACTORS AND EXCHANGE INTERACTION FROM STUDIES OF THE EXCITON FINE STRUCTURE IN IN0.60GA0.40AS QUANTUM DOTS , 1999 .

[31]  P. Bhattacharya,et al.  Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature , 2002 .

[32]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[33]  Y. Arakawa,et al.  Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers , 2004 .

[34]  Sanjay Krishna,et al.  High-detectivity, normal-incidence, mid-infrared (λ∼4 μm)InAs/GaAs quantum-dot detector operating at 150 K , 2001 .

[35]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[36]  C. Humphreys,et al.  Temporal variation in photoluminescence from single InGaN quantum dots , 2004 .

[37]  Haiyu Huang,et al.  Modulation characteristics of quantum-dot lasers: the influence of p-type doping and the electronic density of states on obtaining high speed , 2002 .

[38]  H. Kamada,et al.  Exciton Rabi oscillation in a single quantum dot. , 2001, Physical review letters.

[39]  J. Hvam,et al.  Long lived coherence in self-assembled quantum dots. , 2001, Physical review letters.

[40]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[41]  Pm Paul Koenraad,et al.  Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy , 2002 .

[42]  Jasprit Singh,et al.  Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers , 2003 .

[43]  A. R. Kovsh,et al.  LETTER TO THE EDITOR: High performance narrow stripe quantum-dot lasers with etched waveguide , 2003 .

[44]  D. Deppe,et al.  Low-threshold oxide-confined 1.3-μm quantum-dot laser , 2000, IEEE Photonics Technology Letters.

[45]  A. Schliwa,et al.  Repulsive exciton-exciton interaction in quantum dots , 2003 .

[46]  M. Hopkinson,et al.  Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. , 2001, Physical review letters.

[47]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[48]  Y. Okada,et al.  Two-Dimensional In0.4Ga0.6As/GaAs Quantum Dot Superlattices Realized by Self-Organized Epitaxial Growth , 1999 .

[49]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[50]  Gang Chen,et al.  Biexciton quantum coherence in a single quantum dot. , 2002, Physical review letters.

[51]  Mikhail V. Maximov,et al.  Complete suppression of filamentation and superior beam quality in quantum-dot lasers , 2003 .

[52]  A. Khaetskii,et al.  Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots , 2000, cond-mat/0003513.

[53]  J. Baumberg,et al.  Coherent spectroscopy of optically gated charged single InGaAs quantum dots. , 2003, Physical review letters.

[54]  Cedric Nishan Canagarajah,et al.  Indoor 2 GHz polarisation and spatial fading characteristics , 2002 .

[55]  Dieter Bimberg,et al.  450 meV hole localization in GaSb/GaAs quantum dots , 2003 .

[56]  Gammon,et al.  Coherent optical control of the quantum state of a single quantum Dot , 1998, Science.

[57]  Kristian M. Groom,et al.  Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .

[58]  A. Holmes,et al.  Carrier relaxation and quantum decoherence of excited states in self-assembled quantum dots , 2001 .

[59]  A. Zunger,et al.  Compositional and size-dependent spectroscopic shifts in charged self-assembledInxGa1−xAs/GaAsquantum dots , 2003 .

[60]  Charles Santori,et al.  Polarization-correlated photon pairs from a single quantum dot , 2002 .

[61]  Todd H. Stievater,et al.  Measurement of optical absorption by a single quantum dot exciton , 2002 .

[62]  G. Bastard,et al.  Phonon-assisted capture and intradot Auger relaxation in quantum dots , 1999 .

[63]  Y. Arakawa,et al.  EFFICIENT CARRIER RELAXATION MECHANISM IN INGAAS/GAAS SELF-ASSEMBLED QUANTUM DOTS BASED ON THE EXISTENCE OF CONTINUUM STATES , 1999 .

[64]  M. Hopkinson,et al.  Continuum transitions and phonon coupling in single self-assembled Stranski-Krastanow quantum dots , 2003 .

[65]  P. Hawrylak,et al.  Hidden symmetries in the energy levels of excitonic ‘artificial atoms’ , 2000, Nature.

[66]  A. Vasanelli,et al.  Continuous absorption background and decoherence in quantum dots. , 2002, Physical review letters.

[67]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[68]  S. Dyer,et al.  Low-coherence interferometric measurements of the dispersion of multiple fiber Bragg gratings , 2001, IEEE Photonics Technology Letters.

[69]  Costas Fotakis,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 2865 Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities , 2001 .

[70]  G. Abstreiter,et al.  Wavelength selective charge storage in self-assembled InGaAs/GaAs quantum dots , 2003 .

[71]  M. S. Skolnick,et al.  Strong in-plane polarized intraband absorption in vertically aligned InGaAs/GaAs quantum dots , 2003 .

[72]  Albrecht,et al.  Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots. , 1996, Physical review. B, Condensed matter.

[73]  K. Kheng,et al.  Correlated photon emission from a single II–VI quantum dot , 2004 .

[74]  J. A. Barker,et al.  Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots , 2000 .

[75]  Charles W. Tu,et al.  Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs , 2000 .

[76]  D. Bimberg,et al.  Injection lasers based on InGaAs quantum dots in an AlGaAs matrix , 1998 .

[77]  Vadim Tokranov,et al.  Enhanced thermal stability of laser diodes with shape-engineered quantum dot medium , 2003 .

[78]  Jasprit Singh,et al.  Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots , 2002 .

[79]  Wolfgang Werner Langbein,et al.  Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots , 2002 .

[80]  A. Forchel,et al.  Line narrowing in single semiconductor quantum dots: Toward the control of environment effects , 2002 .

[81]  M. S. Skolnick,et al.  Carrier dynamics in short wavelength self-assembled InAs/Al0.6Ga0.4As quantum dots with indirect barriers , 2003 .

[82]  G. Bastard,et al.  Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons , 1999 .

[83]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[84]  Inoshita,et al.  Electron relaxation in a quantum dot: Significance of multiphonon processes. , 1992, Physical review. B, Condensed matter.

[85]  Y. Arakawa,et al.  Photon lifetime dependence of modulation efficiency and K factor in 1.3μm self-assembled InAs∕GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth , 2004 .

[86]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[87]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[88]  G. Bastard,et al.  Optically driven spin memory in n-doped InAs-GaAs quantum dots. , 2002, Physical review letters.

[89]  I. Gregory,et al.  Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot , 2002 .

[90]  Y. Arakawa,et al.  Narrow photoluminescence linewidth (<17 meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition , 2004 .

[91]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[92]  M. Hopkinson,et al.  Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot , 2001 .

[93]  G. Bastard,et al.  Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. , 1994, Physical review letters.

[94]  A. Forchel,et al.  Importance of Auger recombination in InAs 1.3 /spl mu/m quantum dot lasers , 2003 .

[95]  Mikhail V. Maximov,et al.  3.5 W CW operation of quantum dot laser , 1999 .

[96]  G. Medeiros-Ribeiro,et al.  Coulomb interactions in small charge-tunable quantum dots: A simple model , 1998 .

[97]  A. Kavokin,et al.  Zero-field spin quantum beats in charged quantum dots , 2002 .

[98]  G. Abstreiter,et al.  Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields , 2001 .

[99]  C. Voisin,et al.  Photoluminescence up-conversion in single self-assembled InAs/GaAs quantum dots. , 2001, Physical review letters.

[100]  J. Gerard,et al.  Long polaron lifetime in InAs/GaAs self-assembled quantum dots. , 2002, Physical review letters.

[101]  Yasuhiko Arakawa,et al.  Fabrication of InAs quantum dots on InP(100) by metalorganic vapor-phase epitaxy for 1.55 μm optical device applications , 2004 .

[102]  Egorov,et al.  Ultranarrow Luminescence Lines from Single Quantum Dots. , 1995, Physical review letters.

[103]  Skolnick,et al.  Electronic energy levels and energy relaxation mechanisms in self-organized InAs/GaAs quantum dots. , 1996, Physical review. B, Condensed matter.

[104]  M. S. Skolnick,et al.  Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons , 2004 .

[105]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[106]  M. S. Skolnick,et al.  Engineering carrier confinement potentials in 1.3-μm InAs/GaAs quantum dots with InAlAs layers: Enhancement of the high-temperature photoluminescence intensity , 2003 .

[107]  A. Holmes,et al.  Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. , 2002, Physical review letters.

[108]  Joo-Heon Ahn,et al.  High temperature performance of self-organised quantum dot laser with stacked p-doped active region , 2002 .

[109]  T. Elsaesser,et al.  Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations. , 2004, Physical review letters.

[110]  Khaled Karrai,et al.  Hybridization of electronic states in quantum dots through photon emission , 2004, Nature.

[111]  Yasuhiko Arakawa,et al.  Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-µm P-Doped Quantum-Dot Lasers without Current Adjustments , 2004 .

[112]  E. Dekel,et al.  Carrier-carrier correlations in an optically excited single semiconductor quantum dot , 1999, cond-mat/9904334.

[113]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[114]  M Paillard,et al.  Spin relaxation quenching in semiconductor quantum dots. , 2001, Physical review letters.

[115]  Luke R. Wilson,et al.  Intraband relaxation via polaron decay in InAs self-assembled quantum dots , 2004 .

[116]  Kai Cheng,et al.  Ultra-broad-band AOTF based on cladding etched single-mode fiber , 2002 .

[117]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[118]  Polarization-correlated photon pairs from a single quantum dot , 2002, QELS 2002.

[119]  G. Bauer,et al.  Structural properties of self-organized semiconductor nanostructures , 2004 .

[120]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[121]  M. S. Skolnick,et al.  Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots , 1999 .

[122]  S. Sugou,et al.  Low chirp operation in 1.6 /spl mu/m quantum dot laser under 2.5 GHz direct modulation , 2001 .

[123]  A. Zrenner,et al.  Coherent properties of a two-level system based on a quantum-dot photodiode , 2002, Nature.

[124]  Thomas F. Krauss,et al.  Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots , 2001 .

[125]  Shunichi Muto,et al.  On a Possibility of Wavelength-Domain-Multiplication Memory Using Quantum Boxes , 1995 .

[126]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[127]  Rosa Weigand,et al.  Fine Structure of Biexciton Emission in Symmetric and Asymmetric CdSe/ZnSe Single Quantum Dots , 1999 .

[128]  Y. Arakawa,et al.  High-density and size-controlled GaN self-assembled quantum dots grown by metalorganic chemical vapor deposition , 2002 .

[129]  T. F. Boggess,et al.  Ultrafast electron capture into p-modulation-doped quantum dots , 2004 .

[130]  O. Schmidt,et al.  Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays. , 2003, Physical review letters.

[131]  P. Bhattacharya,et al.  Raman coherence beats from entangled polarization eigenstates in InAs quantum dots. , 2002, Physical review letters.

[132]  George W. Turner,et al.  Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm , 1998 .

[133]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[134]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[135]  Daniel Loss,et al.  Phonon-Induced Decay of the Electron Spin in Quantum Dots , 2004 .

[136]  M. S. Skolnick,et al.  Dynamics of coherent and incoherent spin polarizations in ensembles of quantum dots. , 2004, Physical review letters.

[137]  F. Rossi,et al.  Quantum information processing with semiconductor macroatoms. , 2000, Physical review letters.