Adaptive reduction‐based AMG

SUMMARY With the ubiquity of large-scale computing resources has come significant attention to practical details of fast algorithms for the numerical solution of partial dierential equations. Included in this group are the class of multigrid and algebraic multigrid algorithms that are eective solvers for many of the large matrix problems arising from the discretization of elliptic operators. Algebraic multigrid (AMG) is especially eective for many problems with discontinuous coecients, discretized on unstructured grids, or over complex geometries. While much eort has been invested in improving the practical performance of AMG, little theoretical understanding of this performance has emerged. This paper presents a two-level convergence theory for a reduction-based variant of AMG, called AMGr, which is particularly appropriate for linear systems that have M-matrix-like properties. For situations where less is known about the problem matrix, an adaptive version of AMGr that automatically determines the form of the reduction needed by the AMGr process is proposed. The adaptive cycle is shown, in both theory and practice, to yield an eective AMGr algorithm. Copyright c 2006 John Wiley & Sons, Ltd.

[1]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[2]  Van Emden Henson,et al.  Robustness and Scalability of Algebraic Multigrid , 1999, SIAM J. Sci. Comput..

[3]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[4]  S. McCormick,et al.  A multilevel variational method for Au= Bu on composite Grids , 1989 .

[5]  Ludmil T. Zikatanov,et al.  On two‐grid convergence estimates , 2005, Numer. Linear Algebra Appl..

[6]  Klaus Stüben,et al.  Parallel algebraic multigrid based on subdomain blocking , 2001, Parallel Comput..

[7]  P. Vassilevski,et al.  ON GENERALIZING THE AMG FRAMEWORK , 2003 .

[8]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[9]  Scott P. MacLachlan,et al.  Improving robustness in multiscale methods , 2004 .

[10]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[11]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[12]  I. Marek,et al.  A note on local and global convergence analysis of iterative aggregation–disaggregation methods , 2006 .

[13]  Hans De Sterck,et al.  Reducing Complexity in Parallel Algebraic Multigrid Preconditioners , 2004, SIAM J. Matrix Anal. Appl..

[14]  O. E. Livne,et al.  Coarsening by compatible relaxation , 2004, Numer. Linear Algebra Appl..

[15]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[16]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[17]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[18]  S. F. McCormick,et al.  Multigrid Methods for Variational Problems , 1982 .

[19]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (AlphaSA) Multigrid , 2005, SIAM Rev..

[20]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[21]  Ulrike Meier Yang,et al.  On the use of relaxation parameters in hybrid smoothers , 2004, Numer. Linear Algebra Appl..

[22]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[23]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[24]  Yvan Notay,et al.  Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..

[25]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..