Entropy rate of diffusion processes on complex networks.

We introduce the concept of entropy rate to characterize a diffusion process on a complex network. The entropy rate represents the minimal amount of information necessary to describe the diffusion on the network, and is a quantity extremely sensitive to the network topology and dynamics. By opportunely tuning the kind of diffusion, the entropy rate allows one to extract different properties of the network structure. Moreover, entropy maximization indicates how to design optimal diffusion processes, providing a new theoretical tool with applications to social, technological, and communication systems.

[1]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  R. Balian From microphysics to macrophysics , 1991 .

[3]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[4]  F. R. Gantmakher The Theory of Matrices , 1984 .

[5]  Sebastian Bernhardsson,et al.  Optimization and scale-freeness for complex networks. , 2007, Chaos.

[6]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[7]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[8]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[9]  A Díaz-Guilera,et al.  Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[11]  K Sneppen,et al.  Networks and cities: an information perspective. , 2005, Physical review letters.

[12]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[13]  K Sneppen,et al.  Communication boundaries in networks. , 2005, Physical review letters.

[14]  R. Solé,et al.  Optimization in Complex Networks , 2001, cond-mat/0111222.

[15]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[16]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[17]  Vito Latora,et al.  A topological analysis of scientific coauthorship networks , 2006 .

[18]  G. Bianconi The entropy of randomized network ensembles , 2007, 0708.0153.

[19]  Lucas Antiqueira,et al.  Correlations between structure and random walk dynamics in directed complex networks , 2007, Applied physics letters.

[20]  V. Latora,et al.  Kolmogorov-Sinai Entropy Rate versus Physical Entropy , 1998, chao-dyn/9806006.

[21]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[23]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[24]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[25]  Alessandro Vespignani,et al.  Topology, hierarchy, and correlations in Internet graphs , 2004 .

[26]  M. Newman,et al.  Statistical mechanics of networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.