Visual Analytics and Information Retrieval

Visual Analytics (VA) [1] is an emerging multi-disciplinary area that takes into account both ad-hoc and classical Data Mining (DM) algorithms and Information Visualization IV (IV) techniques, combining the strengths of human and electronic data processing. Visualisation becomes the medium of a semi-automated analytical process, where human beings and machines cooperate using their respective distinct capabilities for the most effective results. Decisions on which direction analysis should take in order to accomplish a certain task are left to the user. Although IV techniques have been extensively explored [2], combining them with automated data analysis for specific application domains is still a challenging activity [3]. This chapter provides an introduction of the main concepts behind VA and presents some practical examples on how apply it to Information Retrieval (IR).

[1]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[2]  Robert Spence,et al.  Information Visualization: Design for Interaction (2nd Edition) , 2006 .

[3]  Pak Chung Wong,et al.  Visual Analytics , 2004, IEEE Computer Graphics and Applications.

[4]  Daniel A. Keim,et al.  Visual Analytics Challenges , 2009 .

[5]  Daniel A. Keim,et al.  Challenges in Visual Data Analysis , 2006, Tenth International Conference on Information Visualisation (IV'06).

[6]  Chaomei Chen,et al.  Information Visualization: Beyond the Horizon , 2006 .

[7]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[8]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[9]  Martin Braschler,et al.  A PROMISE for Experimental Evaluation , 2010, CLEF.

[10]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[11]  Daniel A. Keim,et al.  Geovisual analytics for spatial decision support: Setting the research agenda , 2007, Int. J. Geogr. Inf. Sci..

[12]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[13]  Daniel A. Keim,et al.  Visual exploration of large data sets , 2001, Commun. ACM.

[14]  Martin Braschler,et al.  PROMISE retreat report prospects and opportunities for information access evaluation , 2012, SIGF.