Algebro-Geometric Solutions of the Baxter–Szegő Difference Equation

We derive theta function representations of algebro-geometric solutions of a discrete system governed by a transfer matrix associated with (an extension of) the trigonometric moment problem studied by Szegő and Baxter. We also derive a new hierarchy of coupled nonlinear difference equations satisfied by these algebro-geometric solutions.

[1]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[2]  G. Baxter A norm inequality for a “finite-section” Wiener-Hopf equation , 1963 .

[3]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1920 .

[4]  S. Verblunsky,et al.  On Positive Harmonic Functions , 1936 .

[5]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[6]  A. Chowdhury,et al.  On the quasi-periodic solutions to the discrete nonlinear Schrodinger equation , 1987 .

[7]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1921 .

[8]  Fritz Gesztesy,et al.  An Alternative Approach to Algebro-Geometric Solutions of the AKNS Hierarchy , 1997, solv-int/9707009.

[9]  D. Mumford Tata Lectures on Theta I , 1982 .

[10]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[11]  J. Geronimo,et al.  A Difference Equation Arising from the Trigonometric Moment Problem Having Random Reflection Coefficients - An Operator Theoretic Approach , 1994 .

[12]  J. Geronimo,et al.  ROTATION NUMBER ASSOCIATED WITH DIFFERENCE EQUATIONS SATISFIED BY POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE , 1996 .

[13]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[14]  M. Ablowitz,et al.  On the solution of a class of nonlinear partial di erence equations , 1977 .

[15]  Analogs of the m -function in the theory of orthogonal polynomials on the unit circle , 2003, math/0311050.

[16]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[17]  J. Geronimo,et al.  Inverse Problem for Polynomials Orthogonal on the Unit Circle , 1998 .

[18]  G. Teschl,et al.  The KDV Hierarchy and Associated Trace Formulas , 1996 .

[19]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[20]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[21]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[22]  F. Gesztesy,et al.  A Borg‐Type Theorem Associated with Orthogonal Polynomials on the Unit Circle , 2005, math/0501212.

[23]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[24]  L. Faybusovich,et al.  On Schur flows , 1999 .

[25]  J. Geronimus On the Trigonometric Moment Problem , 1946 .

[26]  Yoshimasa Nakamura,et al.  Schur flow for orthogonal polynomials on the unit circle and its integrable discretization , 2002 .

[27]  S. Verblunsky,et al.  On Positive Harmonic Functions: A Contribution to the Algebra of Fourier Series , 1935 .

[28]  Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.

[29]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[30]  G. Baxter,et al.  A CONVERGENCE EQUIVALENCE RELATED TO POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE , 1961 .

[31]  Vadym Vekslerchik,et al.  Finite-genus solutions for the Ablowitz-Ladik hierarchy , 1999, solv-int/9903004.

[32]  Orthogonal polynomials on the unit circle: New results , 2004, math/0405111.

[33]  M. Ablowitz Nonlinear Evolution Equations—Continuous and Discrete , 1977 .

[34]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[35]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[36]  N. Bogolyubov,et al.  Discrete periodic problem for the modified nonlinear Korteweg-de Vries equation , 1981 .

[37]  Xianguo Geng,et al.  Algebro–geometric constructions of the discrete Ablowitz–Ladik flows and applications , 2003 .

[38]  Helge Holden,et al.  Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .

[39]  G. Baxter Polynomials defined by a difference system , 1960 .

[40]  G. Teschl,et al.  Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies , 1995 .