Classical Simulation of Quantum Adiabatic Algorithms Using Mathematica on GPUs

In this paper we present a simulation environment enhanced with parallel processing which can be used on personal computers, based on a high-level user interface developed on Mathematica\copyright which is connected to C++ code in order to make our platform capable of communicating with a Graphics Processing Unit. We introduce the reader to the behavior of our proposal by simulating a quantum adiabatic algorithm designed for solving hard instances of the 3-SAT problem. We show that our simulator is capable of significantly increasing the number of qubits that can be simulated using classical hardware. Finally, we present a review of currently available classical simulators of quantum systems together with some justifications, based on our willingness to further understand processing properties of Nature, for devoting resources to building more powerful simulators.

[1]  Jie Cheng,et al.  CUDA by Example: An Introduction to General-Purpose GPU Programming , 2010, Scalable Comput. Pract. Exp..

[2]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[3]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[4]  P. Knight,et al.  Propagating quantum walks: The origin of interference structures , 2003, quant-ph/0312133.

[5]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[6]  R. Kosut,et al.  Coherent Control of Decoherence , 2005, Science.

[7]  B. Lanyon,et al.  Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. , 2007, Physical review letters.

[8]  Jonathan Grattage A functional quantum programming language , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[9]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[10]  Carlo A. Trugenberger,et al.  Quantum Pattern Recognition , 2002, Quantum Inf. Process..

[11]  Alán Aspuru-Guzik,et al.  A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..

[12]  M. Kim,et al.  Simulation of quantum random walks using the interference of a classical field , 2003, quant-ph/0305008.

[13]  S. Jordan Fast quantum algorithm for numerical gradient estimation. , 2004, Physical review letters.

[14]  C. Trugenberger Phase transitions in quantum pattern recognition. , 2002, Physical review letters.

[15]  M. Amin,et al.  Does adiabatic quantum optimization fail for NP-complete problems? , 2010, Physical review letters.

[16]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[17]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[18]  John P. Hayes,et al.  Improving Gate-Level Simulation of Quantum Circuits , 2003, Quantum Inf. Process..

[19]  Y. Lim,et al.  Single-qubit rotations in two-dimensional optical lattices with multiqubit addressing , 2006, quant-ph/0601100.

[20]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..

[21]  John Taylor Stallings,et al.  The Search For Satisfaction , 1935 .

[22]  Jie Cheng,et al.  Programming Massively Parallel Processors. A Hands-on Approach , 2010, Scalable Comput. Pract. Exp..

[23]  Vlatko Vedral,et al.  Quantum physics meets biology , 2009, HFSP journal.

[24]  B. Ömer Classical Concepts in Quantum Programming , 2002, quant-ph/0211100.

[25]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[26]  P. Knight,et al.  Quantum walk on the line as an interference phenomenon , 2003, quant-ph/0304201.

[27]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[28]  Toby Walsh,et al.  The Search for Satisfaction , 1999 .

[29]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[30]  Joseph O'Rourke,et al.  Discrete and Computational Geometry , 2011 .

[31]  Jeffrey K. Uhlmann,et al.  Quantum Computer Science , 2008, Synthesis Lectures on Quantum Computing.

[32]  Bernhard Ömer,et al.  Quantum Programming in QCL , 2000 .

[33]  A. Janotti,et al.  Quantum computing with defects , 2013 .

[34]  T. Hogg Adiabatic Quantum Computing for Random Satisfiability Problems , 2002, quant-ph/0206059.

[35]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[36]  Willis Grant Cooper,et al.  Accuracy in Biological Information Technology Involves Enzymatic Quantum Processing and Entanglement of Decohered Isomers , 2011, Inf..

[37]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[38]  Nayak Ashwin,et al.  Quantum Walk on the Line , 2000 .

[39]  Simona Caraiman,et al.  Parallel Simulation of Quantum Search , 2010, Int. J. Comput. Commun. Control.

[40]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[41]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[42]  Peter Shirley,et al.  Fundamentals of computer graphics , 2018 .

[43]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[44]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[45]  D. Browne Efficient classical simulation of the quantum Fourier transform , 2006, quant-ph/0612021.

[46]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[47]  A. Young,et al.  Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.

[48]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[49]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[50]  G. Rose,et al.  Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models , 2008, 0801.3625.

[51]  Sriyankar Acharyya SAT Algorithms for Colouring Some Special Classes of Graphs: Some Theoretical and Experimental Results , 2008, J. Satisf. Boolean Model. Comput..

[52]  J. Cirac,et al.  Quantum manipulation of trapped ions in two dimensional coulomb crystals. , 2006, Physical review letters.

[53]  C. Trugenberger Probabilistic quantum memories. , 2000, Physical review letters.

[54]  P. Knight,et al.  Optical Cavity Implementations of the Quantum Walk , 2003, quant-ph/0305165.

[55]  Dirk Bouwmeester,et al.  The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation , 2010, Physics and astronomy online library.

[56]  Peter Nyman,et al.  A Symbolic Classical Computer Language for Simulation of Quantum Algorithms , 2009, QI.

[57]  Luciano Serafini,et al.  Toward an architecture for quantum programming , 2001, ArXiv.