Multimass spherical structure models for N-body simulations

We present a simple and efficient method to set up spherical structure models for N-body simulations with a multimass technique. This technique reduces by a substantial factor the computer run time needed in order to resolve a given scale as compared to single-mass models. It therefore allows to resolve smaller scales in N-body simulations for a given computer run time. Here, we present several models with an effective resolution of up to 1.68 x 10 9 particles within their virial radius which are stable over cosmologically relevant time-scales. As an application, we confirm the theoretical prediction by Dehnen that in mergers of collisionless structures like dark matter haloes always the cusp of the steepest progenitor is preserved. We model each merger progenitor with an effective number of particles of approximately 10 8 particles. We also find that in a core-core merger the central density approximately doubles whereas in the cusp-cusp case the central density only increases by approximately 50 per cent. This may suggest that the central regions of flat structures are better protected and get less energy input through the merger process.

[1]  Michael Kuhlen,et al.  Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure , 2007, astro-ph/0703337.

[2]  Michael Kuhlen,et al.  Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo , 2006, astro-ph/0611370.

[3]  C. Carollo,et al.  An optimum time-stepping scheme for N-body simulations , 2006, astro-ph/0606589.

[4]  J. Read,et al.  Does the Fornax dwarf spheroidal have a central cusp or core , 2006, astro-ph/0601404.

[5]  Joachim Stadel,et al.  Cusps in cold dark matter haloes , 2005 .

[6]  A. Kravtsov,et al.  The Robustness of Dark Matter Density Profiles in Dissipationless Mergers , 2005, astro-ph/0510583.

[7]  F. Prada,et al.  How Far Do They Go? The Outer Structure of Galactic Dark Matter Halos , 2005, astro-ph/0506432.

[8]  H. Velazquez Preservation of Cuspy Profiles in Disk Galaxy Mergers , 2005, astro-ph/0506290.

[9]  W. Dehnen Phase-space mixing and the merging of cusps , 2005, astro-ph/0504246.

[10]  M. Carollo,et al.  Cusps in cold dark matter haloes , 2005, astro-ph/0504215.

[11]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[12]  J. Stadel,et al.  The origin and tidal evolution of cuspy triaxial haloes , 2003, astro-ph/0310660.

[13]  Ben Moore,et al.  Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation , 2003, astro-ph/0309517.

[14]  M. Boylan-Kolchin,et al.  Major mergers of galaxy haloes: cuspy or cored inner density profile? , 2003, astro-ph/0309243.

[15]  Joachim Stadel,et al.  Two-body relaxation in cold dark matter simulations , 2003, astro-ph/0304549.

[16]  S. Khochfar,et al.  Orbital parameters of merging dark matter halos , 2003, astro-ph/0309611.

[17]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[18]  Richard Montgomery,et al.  A remarkable periodic solution of the three-body problem in the case of equal masses , 2000, math/0011268.

[19]  S. White,et al.  Tidal tailspin cold dark matter cosmologies , 1999 .

[20]  George K. Miley,et al.  GALAXY INTERACTIONS AT LOW AND HIGH REDSHIFT , 1999 .

[21]  J. Barnes,et al.  Galaxy Interactions at Low and High Redshift , 1999 .

[22]  Jozef Baruník Diploma thesis , 1999 .

[23]  J. Barnes Dynamics of Mergers & Remnants , 1998, astro-ph/9811091.

[24]  P. R. Wilson,et al.  The Internal Solar Rotation Rate Inferred from Combined GONG and LOWL Data , 1998 .

[25]  C. Frenk,et al.  The Evolution of X-Ray Clusters in a Low-Density Universe , 1997, astro-ph/9708070.

[26]  Gregory Laughlin,et al.  A dying universe: the long-term fate and evolutionof astrophysical objects , 1997, astro-ph/9701131.

[27]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[28]  HongSheng Zhao Analytical models for galactic nuclei , 1995, astro-ph/9509122.

[29]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[30]  K. Kuijken,et al.  Lowered Evans models: analytic distribution functions of oblate halo potentials , 1993, astro-ph/9310011.

[31]  S. Tremaine,et al.  A family of models for spherical stellar systems , 1993, astro-ph/9309044.

[32]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[33]  James Binney,et al.  N-body simulations with perturbation particles – I. Method and tests , 1993 .

[34]  Moore,et al.  Braids in classical dynamics. , 1993, Physical review letters.

[35]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[36]  F. Dyson Time without end: Physics and biology in an open universe , 1979 .