Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems

We consider the problem of approximating the reachable set of a discrete-time polynomial system from a semialgebraic set of initial conditions under general semialgebraic set constraints. Assuming inclusion in a given simple set like a box or an ellipsoid, we provide a method to compute certified outer approximations of the reachable set. The proposed method consists of building a hierarchy of relaxations for an infinite-dimensional moment problem. Under certain assumptions, the optimal value of this problem is the volume of the reachable set and the optimum solution is the restriction of the Lebesgue measure on this set. Then, one can outer approximate the reachable set as closely as desired with a hierarchy of super level sets of increasing degree polynomials. For each fixed degree, finding the coefficients of the polynomial boils down to computing the optimal solution of a convex semidefinite program. When the degree of the polynomial approximation tends to infinity, we provide strong convergence guarantees of the super level sets to the reachable set. We also present some application examples together with numerical results.

[1]  D. Bertsekas Infinite time reachability of state-space regions by using feedback control , 1972 .

[2]  Victor Magron,et al.  Formal Proofs for Nonlinear Optimization , 2014, J. Formaliz. Reason..

[3]  G. Chesi Domain of Attraction: Analysis and Control via SOS Programming , 2011 .

[4]  Colin Neil Jones,et al.  Inner Approximations of the Region of Attraction for Polynomial Dynamical Systems , 2012, NOLCOS.

[5]  O. Nikodým Sur une généralisation des intégrales de M. J. Radon , 1930 .

[6]  Didier Henrion,et al.  Approximate Volume and Integration for Basic Semialgebraic Sets , 2009, SIAM Rev..

[7]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[8]  Olivier Bernard,et al.  Global qualitative description of a class of nonlinear dynamical systems , 2002, Artif. Intell..

[9]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[10]  Didier Henrion Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems , 2012, Kybernetika.

[11]  Paul I. Barton,et al.  Efficient polyhedral enclosures for the reachable set of nonlinear control systems , 2016, Math. Control. Signals Syst..

[12]  Kellen Petersen August Real Analysis , 2009 .

[13]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[14]  Mathukumalli Vidyasagar,et al.  Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems , 1981, Autom..

[15]  Tommaso Dreossi,et al.  Sapo: Reachability Computation and Parameter Synthesis of Polynomial Dynamical Systems , 2016, HSCC.

[16]  Didier Henrion,et al.  Convex Computation of Extremal Invariant Measures of Nonlinear Dynamical Systems and Markov Processes , 2018, J. Nonlinear Sci..

[17]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[18]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[19]  D. Henrion,et al.  Semidefinite Approximations of Invariant Measures for Polynomial Systems , 2018, 1807.00754.

[20]  Didier Henrion,et al.  Semidefinite Approximations of Projections and Polynomial Images of SemiAlgebraic Sets , 2015, SIAM J. Optim..

[21]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[22]  Jean B. Lasserre,et al.  Tractable approximations of sets defined with quantifiers , 2014, Math. Program..

[23]  Colin Neil Jones,et al.  Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems , 2013, 52nd IEEE Conference on Decision and Control.

[24]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[25]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[26]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[27]  Antoine Girard,et al.  Reachability Analysis of Polynomial Systems Using Linear Programming Relaxations , 2012, ATVA.

[28]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[29]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[30]  Xin Chen,et al.  Linear relaxations of polynomial positivity for polynomial Lyapunov function synthesis , 2014, IMA J. Math. Control. Inf..

[31]  Jean B. Lasserre,et al.  A New Look at Nonnegativity on Closed Sets and Polynomial Optimization , 2010, SIAM J. Optim..

[32]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[33]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[34]  Ruzena Bajcsy,et al.  Convex computation of the reachable set for controlled polynomial hybrid systems , 2014, 53rd IEEE Conference on Decision and Control.

[35]  Didier Henrion,et al.  Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions , 2011, IEEE Transactions on Automatic Control.

[36]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[37]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[38]  J. Rogers Chaos , 1876 .

[39]  S. Pearson Moments , 2020, Narrative inquiry in bioethics.

[40]  M. Stone The Generalized Weierstrass Approximation Theorem , 1948 .