Utilization of Classical Scaling Technique in Sustaining Fault Detection Performance in Process Monitoring

[1]  Yoshio Takane,et al.  Matrices with special reference to applications in psychometrics , 2004 .

[2]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .

[3]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[4]  Jie Zhang,et al.  Process performance monitoring using multivariate statistical process control , 1996 .

[5]  David Zumoffen,et al.  Plant-wide control strategy applied to the Tennessee Eastman process at two operating points , 2011, Comput. Chem. Eng..

[6]  Jin Wang,et al.  Feature space monitoring for smart manufacturing via statistics pattern analysis , 2019, Comput. Chem. Eng..

[7]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[8]  Leo H. Chiang,et al.  Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis , 2000 .

[9]  John F. MacGregor,et al.  Process monitoring and diagnosis by multiblock PLS methods , 1994 .

[10]  Dale E. Seborg,et al.  Identification of the Tennessee Eastman challenge process with subspace methods , 2000 .

[11]  Mohd. Yunus,et al.  Multivariate statistical process monitoring using classical multidimensional scaling , 2012 .

[12]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[13]  A. Zheng Nonlinear model predictive control of the Tennessee Eastman process , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[14]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[15]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[16]  José Manuel Amigo,et al.  On-line parallel factor analysis. A step forward in the monitoring of bioprocesses in real time , 2008 .

[17]  T. Cox Multidimensional scaling used in multivariate statistical process control , 2001 .

[18]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[19]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[20]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[21]  Andrea Paul,et al.  Introduction to multivariate Data Analysis , 2017 .

[22]  DvorakDaniel,et al.  Process Monitoring and Diagnosis , 1991 .

[23]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[24]  Jie Zhang,et al.  Process monitoring using non-linear statistical techniques , 1997 .

[25]  Jin Wang,et al.  Statistical process monitoring as a big data analytics tool for smart manufacturing , 2017, Journal of Process Control.

[26]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .