Using data analysis for discovering improvement potentials in production process

Today technical product documentation and also related product use phase feedback contain valuable information about the company's products. In addition processing of various types of feedback provides opportunities for improvement potentials in product development especially in the next product generation and for increasing customer satisfaction. In this context, the acquired information is the key source of procedural knowledge particularly in product life cycle/data management. In the previous publications [1], [2] various knowledge based methods/functions like Bayesian Network, Dynamic Bayesian Network and Aggregation are presented, based on a kind of Assistance System for integration of product use information into product development. This paper presents a data integration approach through establishing an Assistance System for steel industry applications particularly for moderating of heat treatment process. In addition, a concept for using indicator systems for evaluating the performance of the Assistance System and particularly information quality is presented.

[1]  Hans-Georg Kemper,et al.  Management Support with Structured and Unstructured Data—An Integrated Business Intelligence Framework , 2008, Inf. Syst. Manag..

[2]  Fazel Ansari,et al.  Evolution of Intelligent Quality Management Process Based on Using Performance Quality Indicators , 2011, Wissensmanagement.

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  Lawrence A. Klein,et al.  Sensor and Data Fusion: A Tool for Information Assessment and Decision Making , 2004 .

[5]  Ron S. Kenett,et al.  Bayesian networks of customer satisfaction survey data , 2009 .

[6]  Peter Chamoni,et al.  Management Support Systeme und Business Intelligence: Computergestützte Informationssysteme für Fach- und Führungskräfte , 2005 .

[7]  Ralph Kimball,et al.  The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling , 1996 .

[8]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[9]  Madjid Fathi,et al.  Competing Fusion for Bayesian Applications , 2008 .

[10]  John M. Noble,et al.  Bayesian Networks: An Introduction , 2009 .

[11]  Susanne Dienst,et al.  Necessity of using Dynamic Bayesian Networks for feedback analysis into product development , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[12]  Hans Corsten Produktionswirtschaft : Einführung in das industrielle Produktionsmanagement , 1998 .

[13]  Holger Günzel,et al.  Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung , 2005 .

[14]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[15]  Diane M. Strong,et al.  10 Potholes in the Road to Information Quality , 1997, Computer.

[16]  Robert L. Winkler,et al.  Combining Probability Distributions From Experts in Risk Analysis , 1999 .

[17]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[18]  Susanne Dienst,et al.  Applying Fusion Techniques to Graphical Methods for Knowledge based Processing of Product use Information , 2010, KMIS.

[19]  M. Stone The Opinion Pool , 1961 .

[20]  宮崎 耕,et al.  W. H. Inmon, Building the Data Warehouse , 1993 .

[21]  W. H. Inmon,et al.  Building the data warehouse , 1992 .

[22]  Martin J. Eppler Managing Information Quality , 2003 .

[23]  Matteo Golfarelli,et al.  Data Warehouse Design: Modern Principles and Methodologies , 2009 .

[24]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[25]  John Krogstie,et al.  Active knowledge modeling of enterprises , 2008 .

[26]  Eric V. Slud Graphical Models: Methods for Data Analysis and Mining , 2003, Technometrics.