Bounds for theN lowest eigenvalues of fourth-order boundary value problems

We describe a method for the calculation of theN lowest eigenvalues of fourth-order problems inH02(Ω). In order to obtain small error bounds, we compute the defects inH−2(Ω) and, to obtain a bound for the rest of the spectrum, we use a boundary homotopy method. As an example, we compute strict error bounds (using interval arithmetic to control rounding errors) for the 100 lowest eigenvalues of the clamped plate problem in the unit square. Applying symmetry properties, we prove the existence of double eigenvalues.

[1]  Hans Rudolf Schwarz,et al.  Methode der finiten Elemente , 1984 .

[2]  F. Goerisch Ein Stufenverfahren zur Berechnung von Eigenwertschranken , 1987 .

[3]  G. Hedstrom,et al.  Numerical Solution of Partial Differential Equations , 1966 .

[4]  F. Goerisch,et al.  Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichungen , 1985 .

[5]  Roland Glowinski,et al.  Iterative solution of the stream function-vorticity formulation of the stokes problem, applications to the numerical simulation of incompressible viscous flow , 1991 .

[6]  Michael Plum Bounds for eigenvalues of second-order elliptic differential operators , 1991 .

[7]  Tosio Kato,et al.  On some approximate methods concerning the operatorsT* T , 1953 .

[8]  Wolfgang Hackbusch,et al.  Results of the eigenvalue problem for the plate equation , 1980 .

[9]  Christian Wieners Numerische Existenzbeweise für schwache Lösungen nichtlinearer elliptischer Randwertaufgaben , 1994 .

[10]  Gaetano Fichera,et al.  Numerical and quantitative analysis , 1977 .

[11]  Theodor Meis,et al.  Numerical solution of partial differential equations , 1981 .

[12]  Michael Plum,et al.  Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .

[13]  Christian Wieners A numerical existence proof of nodal lines for the first eigenfunction of the plate equation , 1996 .

[14]  V. G. Sigillito,et al.  Estimating eigenvalues with a posteriori/a priori inequalities , 1985 .

[15]  Christian Wieners Numerical Enclosures for Solutions of the Navier-stokes Equation for Small Reynolds Numbers , 2007 .

[16]  Jianxin Zhou,et al.  Analysis of vibration eigenfrequencies of a thin plate by the Keller-Rubnow wave method I: clamped boundary conditions with rectangular or circular geometry , 1991 .