Bounds for theN lowest eigenvalues of fourth-order boundary value problems
暂无分享,去创建一个
[1] Hans Rudolf Schwarz,et al. Methode der finiten Elemente , 1984 .
[2] F. Goerisch. Ein Stufenverfahren zur Berechnung von Eigenwertschranken , 1987 .
[3] G. Hedstrom,et al. Numerical Solution of Partial Differential Equations , 1966 .
[4] F. Goerisch,et al. Eigenwertschranken für Eigenwertaufgaben mit partiellen Differentialgleichungen , 1985 .
[5] Roland Glowinski,et al. Iterative solution of the stream function-vorticity formulation of the stokes problem, applications to the numerical simulation of incompressible viscous flow , 1991 .
[6] Michael Plum. Bounds for eigenvalues of second-order elliptic differential operators , 1991 .
[7] Tosio Kato,et al. On some approximate methods concerning the operatorsT* T , 1953 .
[8] Wolfgang Hackbusch,et al. Results of the eigenvalue problem for the plate equation , 1980 .
[9] Christian Wieners. Numerische Existenzbeweise für schwache Lösungen nichtlinearer elliptischer Randwertaufgaben , 1994 .
[10] Gaetano Fichera,et al. Numerical and quantitative analysis , 1977 .
[11] Theodor Meis,et al. Numerical solution of partial differential equations , 1981 .
[12] Michael Plum,et al. Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .
[13] Christian Wieners. A numerical existence proof of nodal lines for the first eigenfunction of the plate equation , 1996 .
[14] V. G. Sigillito,et al. Estimating eigenvalues with a posteriori/a priori inequalities , 1985 .
[15] Christian Wieners. Numerical Enclosures for Solutions of the Navier-stokes Equation for Small Reynolds Numbers , 2007 .
[16] Jianxin Zhou,et al. Analysis of vibration eigenfrequencies of a thin plate by the Keller-Rubnow wave method I: clamped boundary conditions with rectangular or circular geometry , 1991 .