Euclidean TSP in Narrow Strip

We investigate how the complexity of Euclidean TSP for point sets $P$ inside the strip $(-\infty,+\infty)\times [0,\delta]$ depends on the strip width $\delta$. We obtain two main results. First, for the case where the points have distinct integer $x$-coordinates, we prove that a shortest bitonic tour (which can be computed in $O(n\log^2 n)$ time using an existing algorithm) is guaranteed to be a shortest tour overall when $\delta\leq 2\sqrt{2}$, a bound which is best possible. Second, we present an algorithm that is fixed-parameter tractable with respect to $\delta$. More precisely, our algorithm has running time $2^{O(\sqrt{\delta})} n^2$ for sparse point sets, where each $1\times\delta$ rectangle inside the strip contains $O(1)$ points. For random point sets, where the points are chosen uniformly at random from the rectangle~$[0,n]\times [0,\delta]$, it has an expected running time of $2^{O(\sqrt{\delta})} n^2 + O(n^3)$.

[1]  Stefan Kratsch,et al.  Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2012, J. ACM.

[2]  Stefan Kratsch,et al.  Deterministic Single Exponential Time Algorithms for Connectivity Problems Parameterized by Treewidth , 2013, ICALP.

[3]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[4]  M. Cutler Efficient special case algorithms for the n-line planar traveling salesman problem , 1980, Networks.

[5]  Mark de Berg,et al.  An ETH-Tight Exact Algorithm for Euclidean TSP , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[6]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[7]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[8]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[9]  Günter Rote,et al.  The Convex-Hull-and-Line Traveling Salesman Problem: A Solvable Case , 1994, Inf. Process. Lett..

[10]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[11]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[12]  Gerhard J. Woeginger,et al.  Fine-grained Complexity Analysis of Two Classic TSP Variants , 2016, ICALP.

[13]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[14]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[15]  Gerhard J. Woeginger,et al.  The Convex-Hull-and-k-Line Travelling Salesman Problem , 1996, Inf. Process. Lett..

[16]  Gerhard J. Woeginger,et al.  The Traveling Salesman Problem with Few Inner Points , 2004, COCOON.

[17]  Günter Rote The n-line traveling salesman problem , 1992, Networks.

[18]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[19]  Nicholas C. Wormald,et al.  Geometric separator theorems and applications , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[20]  Günter Rote,et al.  Testing the Necklace Condition for Shortest Tours and Optimal Factors in the Plane , 1987, ICALP.

[21]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[22]  Ronald L. Rivest,et al.  Introduction to Algorithms, 3rd Edition , 2009 .

[23]  Richard C. T. Lee,et al.  The searching over separators strategy to solve some NP-hard problems in subexponential time , 1993, Algorithmica.