Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model

AbstractThe effects of cloud condensation nuclei (CCN) concentrations are found to strongly affect the microphysical and electrical evolution of a numerically simulated small multicell storm. The simulations reproduce the well-known effects of updraft invigoration and delay of precipitation formation as increasing CCN from low to intermediate concentrations causes droplet sizes to decrease. Peak updrafts increased from 16 m s−1 at the lowest CCN to a maximum of 21–22 m s−1 at moderate CCN, where condensation latent heating is maximized. The transition from low to high CCN first maximizes warm-rain production before switching over to the ice process as the dominant precipitation mechanism. Average graupel density stays fairly high and constant at lower CCN, but then drops monotonically at higher CCN concentration, although high CCN also foster the appearance of small regions of larger, high-density graupel with high simulated radar reflectivity.Graupel production increases monotonically as CCN concentratio...

[1]  S. E. Reynolds,et al.  THUNDERSTORM CHARGE SEPARATION , 1957 .

[2]  A. Pokrovsky,et al.  The Role of Small Soluble Aerosols in the Microphysics of Deep Maritime Clouds , 2012 .

[3]  C. Saunders,et al.  Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions , 1998 .

[4]  C. Saunders,et al.  The effects of high liquid water content on thunderstorm charging , 1992 .

[5]  Zhanqing Li,et al.  Impact of aerosols on convective clouds and precipitation , 2012, Reviews of Geophysics.

[6]  Jiwen Fan,et al.  Effects of aerosols and relative humidity on cumulus clouds , 2007 .

[7]  Nelson,et al.  Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires , 1998, Science.

[8]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[9]  C. Saunders,et al.  The effect on thunderstorm charging of the rate of rime accretion by graupel , 1997 .

[10]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[11]  W. D. Rust,et al.  Electrical and Polarimetric Radar Observations of a Multicell Storm in TELEX , 2007 .

[12]  John H. Helsdon,et al.  An examination of the convective charging hypothesis: Charge structure, electric fields, and Maxwell currents , 2002 .

[13]  Louis J. Wicker,et al.  Time-Splitting Methods for Elastic Models Using Forward Time Schemes , 2002 .

[14]  A. Heymsfield,et al.  Temperature dependence of secondary ice crystal production during soft hail growth by riming , 1984 .

[15]  J. Comstock,et al.  Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds , 2009 .

[16]  C. Saunders,et al.  Laboratory studies of the influence of cloud droplet size on charge transfer during crystal-graupel collisions , 1998 .

[17]  C. Saunders,et al.  A modelling study of the effect of cloud saturation and particle growth rates on charge transfer in thunderstorm electrification , 2005 .

[18]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[19]  E. Mansell,et al.  Simulated three‐dimensional branched lightning in a numerical thunderstorm model , 2002 .

[20]  J. Dendy Black box multigrid , 1982 .

[21]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[22]  Jimy Dudhia,et al.  Spectral (Bin) Microphysics Coupled with a Mesoscale Model (MM5). Part II: Simulation of a CaPE Rain Event with a Squall Line , 2005 .

[23]  L. Remer,et al.  Observational evidence of aerosol enhancement of lightning activity and convective invigoration , 2011 .

[24]  Jerry M. Straka,et al.  TELEX: The Thunderstorm Electrification and Lightning Experiment , 2008 .

[25]  G. Stephens,et al.  Modeling Aerosol Impacts on Convective Storms in Different Environments , 2009 .

[26]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II : Sensitivity study , 2004 .

[27]  J. Hyman,et al.  The Black Box Multigrid Numerical Homogenization Algorithm , 1998 .

[28]  R. S. Maheskumar,et al.  Aerosol control on depth of warm rain in convective clouds , 2012 .

[29]  R. Farley Numerical Modeling of Hailstorms and Hailstone Growth. Part II: The Role of Low-Density Riming Growth in Hag Production , 1987 .

[30]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms , 2006 .

[31]  A. Pokrovsky,et al.  Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: numerical experiments with a spectral microphysics cloud ensemble model , 1999 .

[32]  R. Rasmussen,et al.  A Generalized Form for Impact Velocities Used to Determine Graupel Accretional Densities. , 1985 .

[33]  Y. Wang,et al.  Implementation of a two‐moment bulk microphysics scheme to the WRF model to investigate aerosol‐cloud interaction , 2008 .

[34]  R. Pereyra,et al.  Charge transfer during Crystal‐Graupel Collisions for two different cloud droplet size distributions , 2000 .

[35]  A. Pokrovsky,et al.  Possible Aerosol Effects on Lightning Activity and Structure of Hurricanes , 2008 .

[36]  W. Macklin The density and structure of ice formed by accretion , 1962 .

[37]  C. Saunders,et al.  Parameterisation of non-inductive charging in thunderstorm regions free of cloud droplets , 2006 .

[38]  Tsutomu Takahashi A Numerical Simulation of Winter Cumulus Electrification. Part I: Shallow Cloud , 1983 .

[39]  A. Pokrovsky,et al.  Aerosol impact on the dynamics and microphysics of deep convective clouds , 2005 .

[40]  Chien Wang A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics , 2005 .

[41]  J. Hallett,et al.  Production of secondary ice particles during the riming process , 1974, Nature.

[42]  Martin Gallagher,et al.  Cloud‐resolving simulations of intense tropical Hector thunderstorms: Implications for aerosol–cloud interactions , 2006 .

[43]  Conrad L. Ziegler,et al.  Hail Growth in an Oklahoma Multicell Storm , 1983 .

[44]  James E. Dye,et al.  Early electrification and precipitation development in a small, isolated Montana cumulonimbus , 1986 .

[45]  J. Ziemke,et al.  Aerosol indirect effect on tropospheric ozone via lightning , 2012 .

[46]  E. Mansell On Sedimentation and Advection in Multimoment Bulk Microphysics , 2010 .

[47]  Steven A. Rutledge,et al.  Submitted to: Journal of the Atmospheric Sciences , 2004 .

[48]  Chi-Wang Shu,et al.  High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD , 2001 .

[49]  R. Pielke,et al.  Convective Initiation at the Dryline: A Modeling Study , 1997 .

[50]  Tsutomu Takahashi Hail in an Axisymmetric Cloud Model , 1976 .

[51]  R. Orville,et al.  Cloud‐to‐ground lightning enhancement over Southern Louisiana , 2003 .

[52]  A. Betts,et al.  Contrasting convective regimes over the Amazon: Implications for cloud electrification , 2002 .

[53]  John H. Helsdon,et al.  An examination of thunderstorm‐charging mechanisms using a two‐dimensional storm electrification model , 2001 .

[54]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[55]  Roy Rasmussen,et al.  Melting and Shedding of Graupel and Hail. Part I: Model Physics , 1987 .

[56]  Tsutomu Takahashi,et al.  Riming Electrification as a Charge Generation Mechanism in Thunderstorms , 1978 .

[57]  Jerry M. Straka,et al.  Charge structure and lightning sensitivity in a simulated multicell thunderstorm , 2005 .

[58]  W. Petersen,et al.  Total lightning activity as an indicator of updraft characteristics , 2008 .

[59]  W. Macklin,et al.  The interpretation of the crystalline and air bubble structures of hailstones , 1976 .

[60]  W. Read,et al.  Enhancement of cloud‐to‐ground lightning over Houston, Texas , 2001 .

[61]  Michael B. Richman,et al.  Weekly precipitation cycles? Lack of evidence from United States surface stations , 2007 .

[62]  E. Williams,et al.  The physical origin of the land–ocean contrast in lightning activity , 2002 .

[63]  Hugh J. Christian,et al.  TRMM observations of the global relationship between ice water content and lightning , 2005 .

[64]  Paul R. Krehbiel,et al.  The Timing of Cloud-to-Ground Lightning Relative to Total Lightning Activity , 2011 .

[65]  Tsutomu Takahashi,et al.  Thunderstorm Electrification—A Numerical Study , 1984 .

[66]  Louis J. Wicker,et al.  Simulation and Analysis of Tornado Development and Decay within a Three-Dimensional Supercell Thunderstorm , 1995 .

[67]  D. Rosenfeld TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall , 1999 .

[68]  Robert B. Wilhelmson,et al.  Simulations of Right- and Left-Moving Storms Produced Through Storm Splitting , 1978 .

[69]  O. Pinto,et al.  Evidence of thermal and aerosol effects on the cloud‐to‐ground lightning density and polarity over large urban areas of Southeastern Brazil , 2003 .

[70]  Eric C. Bruning,et al.  Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics , 2010 .

[71]  H. Morrison,et al.  Prediction of Graupel Density in a Bulk Microphysics Scheme , 2013 .

[72]  William R. Cotton,et al.  Urban Aerosol Impacts on Downwind Convective Storms , 2007 .

[73]  S. Mossop Production of secondary ice particles during the growth of graupel by riming , 1976 .

[74]  L. Carey,et al.  Environmental control of cloud-to-ground lightning polarity in severe storms during IHOP , 2004 .