Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies

In the compound eye of flies, the divergence angles between the visual axes of adjacent rhabdomeres are systematically larger than the corresponding interommatidial angles: neurommatidia are focused to distances of about 3–6 mm from the cornea surface. This special arrangement of rhabdomeres is considered as an adaptation of receptor cells R1–R6 for high absolute light sensitivity and, in addition, may possibly aid in estimating distances of visual objects.

[1]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[2]  J. Scholes The electrical responses of the retinal receptors and the lamina in the visual system of the fly musca , 1969, Kybernetik.

[3]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[4]  P. McIntyre Crosstalk between optical waveguides with applications to visual photoreceptors , 1977, Bulletin of the Australian Mathematical Society.

[5]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[6]  Friedrich Zettler,et al.  Histologische Lokalisation der Ableitelektrode. Belichtungspotentiale aus Retina und Lamina bei Calliphora , 1970, Zeitschrift für vergleichende Physiologie.

[7]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[8]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[9]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[10]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[11]  K. Kirschfeld DAS NEURALE SUPERPOSITIONSAUGE , 1973 .

[12]  D. G. Stavenga,et al.  On optical crosstalk between fly rhabdomeres , 1975, Biological Cybernetics.

[13]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[14]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[15]  F. Zettler,et al.  Micro-localisation of lamina-located visual cell activities in the compound eye of the blowfly Calliphora , 1970, Zeitschrift für vergleichende Physiologie.

[16]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[17]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[18]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[19]  W. Harris,et al.  Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster , 1976, The Journal of physiology.

[20]  A. Snyder,et al.  Absorption in conical optical fibers , 1973 .

[21]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[22]  K. Kirschfeld,et al.  Optische Eigenschaften der Ommatidien im Komplexauge von Musca , 1968, Kybernetik.

[23]  K. Kirschfeld,et al.  Waveguide Mode Effects, Birefringence and Dichroism in Fly Photoreceptors , 1975 .

[24]  Allan W. Snyder,et al.  Angular Sensitivity of Lens-Photoreceptor Systems , 1975 .

[25]  S. D. Carlson,et al.  Close apposition of photoreceptor cell axons in the house fly. , 1976, Journal of insect physiology.

[26]  D. Stavenga,et al.  Organization of visual axes in the compound eye of the flyMusca domestica L. and behavioural consequences , 1975, Journal of comparative physiology.

[27]  Allan W. Snyder,et al.  Power transfer between optical fibers , 1973 .