Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning

Nowadays, a variety of controllers used in process industries are still of the proportional-integral-derivative (PID) types. PID controllers have the advantage of simple structure, good stability, and high reliability. A relevant issue for PID controllers design is the accurate and efficient tuning of parameters. In this context, several approaches have been reported in the literature for tuning the parameters of PID controllers using evolutionary algorithms, mainly for single-input single-output systems. The systematic design of multi-loop (or decentralized) PID control for multivariable processes to meet certain objectives simultaneously is still a challenging task. This paper proposes a new chaotic firefly algorithm approach based on Tinkerbell map (CFA) to tune multi-loop PID multivariable controllers. The firefly algorithm is a metaheuristic algorithm based on the idealized behavior of the flashing characteristics of fireflies. To validate the performance of the proposed PID control design, a multi-loop multivariable PID structure for a binary distillation column plant (Wood and Berry column model) and an industrial-scale polymerization reactor are taken. Simulation results indicate that a suitable set of PID parameters can be calculated by the proposed CFA. Besides, some comparison results of a genetic algorithm, a particle swarm optimization approach, traditional firefly algorithm, modified firefly algorithm, and the proposed CFA to tune multi-loop PID controllers are presented and discussed.

[1]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[2]  P. B. Deshpande,et al.  Computer Process Control With Advanced Control Applications , 1988 .

[3]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[4]  Leandro dos Santos Coelho,et al.  Chaotic synchronization using PID control combined with population based incremental learning algorithm , 2010, Expert Syst. Appl..

[5]  L. Coelho Reliability–redundancy optimization by means of a chaotic differential evolution approach , 2009 .

[6]  D. Cooper,et al.  A Tuning Strategy for Unconstrained SISO Model Predictive Control , 1997 .

[7]  G. K. Bhattacharyya,et al.  Statistical Concepts And Methods , 1978 .

[8]  Slawomir Zak,et al.  Firefly Algorithm for Continuous Constrained Optimization Tasks , 2009, ICCCI.

[9]  Chung-Shi Tseng,et al.  Robust PID control design for permanent magnet synchronous motor: A genetic approach , 2008 .

[10]  L. Coelho,et al.  PID control design for chaotic synchronization using a tribes optimization approach , 2009 .

[11]  Hernán De Battista,et al.  Sliding Mode Compensation for Windup and Direction of Control Problems in Two-Input−Two-Output Proportional−Integral Controllers , 2002 .

[12]  Alexander N. Pisarchik,et al.  Dynamic maps in phase-conjugated optical resonators , 2010 .

[13]  S. Skogestad DYNAMICS AND CONTROL OF DISTILLATION COLUMNS A tutorial introduction , 1997 .

[14]  James A. Yorke,et al.  Dynamics: Numerical Explorations , 1994 .

[15]  강태원,et al.  [서평]「Chaos and Fractals : New Frontiers of Science」 , 1998 .

[16]  Ying Wang,et al.  An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem , 2010 .

[17]  Miguel Ángel García-Alvarado,et al.  Robust MIMO PID controllers tuning based on complex/real ratio of the characteristic matrix eigenvalues , 2006 .

[18]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[19]  Keiko Sato,et al.  APPLICATION OF CHAOS DEGREE TO SOME DYNAMICAL SYSTEMS , 1998, math-ph/9809026.

[20]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[21]  Zhiqiang Gao,et al.  A Practical Approach to Disturbance Decoupling Control , 2009 .

[22]  Moonyong Lee,et al.  Independent design of multi-loop PI/PID controllers for interacting multivariable processes , 2010 .

[23]  Wen Tan,et al.  Tuning of PID controllers for boiler-turbine units. , 2004, ISA transactions.

[24]  Wei-Der Chang,et al.  A multi-crossover genetic approach to multivariable PID controllers tuning , 2007, Expert Syst. Appl..

[25]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[26]  W. Chang PID control for chaotic synchronization using particle swarm optimization , 2009 .

[27]  Toshiharu Sugie,et al.  Robust PID controller tuning based on the constrained particle swarm optimization , 2008, Autom..

[28]  Antonio Visioli,et al.  Practical PID Control , 2006 .

[29]  Jonathan Copeland,et al.  The occurrence of synchrony in the North American fireflyPhotinus carolinus (Coleoptera: Lampyridae) , 1994, Journal of Insect Behavior.

[30]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[31]  Hale Hapoglu,et al.  Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm , 2008 .

[32]  Roman Senkerik,et al.  Chaos driven evolutionary algorithms for the task of PID control , 2010, Comput. Math. Appl..

[33]  Xin-She Yang,et al.  Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization , 2010, NICSO.

[34]  L. Coelho,et al.  A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch , 2009 .

[35]  Erhan Akin,et al.  Multi-objective rule mining using a chaotic particle swarm optimization algorithm , 2009, Knowl. Based Syst..

[36]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[37]  Chuanwen Jiang,et al.  PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP) , 2006 .

[38]  L. Coelho,et al.  An improved harmony search algorithm for synchronization of discrete-time chaotic systems , 2009 .

[39]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[40]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[41]  Sunan Wang,et al.  Self-organizing genetic algorithm based tuning of PID controllers , 2009, Inf. Sci..

[42]  Ying-Cheng Lai,et al.  Towards complete detection of unstable periodic orbits in chaotic systems , 2001 .

[43]  In-Beum Lee,et al.  Process Identification and PID Control , 2009 .

[44]  Amin Safari,et al.  Multi-machine power system stabilizers design using chaotic optimization algorithm , 2010 .

[45]  S. Lakshminarayanan,et al.  Estimating performance enhancement with alternate control strategies for multiloop control systems , 2007 .

[46]  M. Sayadi,et al.  A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems , 2010 .

[47]  Jun Wu,et al.  Application of chaos and fractal models to water quality time series prediction , 2009, Environ. Model. Softw..

[48]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[49]  Joseph Aguilar-Martin,et al.  A simplified version of mamdani's fuzzy controller: the natural logic controller , 2006, IEEE Transactions on Fuzzy Systems.

[50]  Qi Wu,et al.  A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization , 2010, Expert Syst. Appl..

[51]  Bill Curtis,et al.  Process modeling , 1992, CACM.

[52]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[53]  Chang-Chieh Hang,et al.  A quasi-LMI approach to computing stabilizing parameter ranges of multi-loop PID controllers , 2007 .

[54]  James A. Yorke,et al.  Dynamics (2nd ed.): numerical explorations , 1998 .

[55]  Daobo Wang,et al.  Novel approach to nonlinear PID parameter optimization using ant colony optimization algorithm , 2006 .

[56]  Robin J. Evans,et al.  Control of chaos: Methods and applications in engineering, , 2005, Annu. Rev. Control..

[57]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[58]  Leandro dos Santos Coelho,et al.  Model-free adaptive control optimization using a chaotic particle swarm approach , 2009 .

[59]  Kun Soo Chang,et al.  Applications of chaos and fractals in process systems engineering , 1996 .

[60]  Hsiao-Ping Huang,et al.  A Simple Multiloop Tuning Method for PID Controllers with No Proportional Kick , 1999 .

[61]  Wei-Chiang Hong,et al.  Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model , 2009 .

[62]  W. Cai,et al.  Equivalent transfer function method for PI/PID controller design of MIMO processes , 2007 .

[63]  Gregory W. Corder,et al.  Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach , 2009 .

[64]  Wen Tan,et al.  Comparison of some well-known PID tuning formulas , 2006, Comput. Chem. Eng..

[65]  J. Buck,et al.  Physiological Links in Firefly Flash Code Evolution , 2004, Journal of Insect Behavior.

[66]  Fernando Daniel Bianchi,et al.  Multivariable PID control with set-point weighting via BMI optimisation , 2008, Autom..

[67]  Xiaohua Yang,et al.  Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection–diffusion equation , 2008 .

[68]  Patrick E. McSharry,et al.  Asymptotic angular stability in non-linear systems: rotation numbers and winding numbers , 2003 .

[69]  Dong Hwa Kim Hybrid GA-BF based intelligent PID controller tuning for AVR system , 2011, Appl. Soft Comput..

[70]  L. Coelho,et al.  Differential evolution optimization combined with chaotic sequences for image contrast enhancement , 2009 .

[71]  L. Coelho,et al.  Nonlinear identification using a B-spline neural network and chaotic immune approaches , 2009 .