Geometric multiscale modeling of the cardiovascular system, between theory and practice

This review paper addresses the so called geometric multiscale approach for the numerical simulation of blood flow problems, from its origin (that we can collocate in the second half of '90s) to our days. By this approach the blood fluid-dynamics in the whole circulatory system is described mathematically by means of heterogeneous problems featuring different degree of detail and different geometric dimension that interact together through appropriate interface coupling conditions. Our review starts with the introduction of the stand-alone problems, namely the 3D fluid-structure interaction problem, its reduced representation by means of 1D models, and the so-called lumped parameters (aka 0D) models, where only the dependence on time survives. We then address specific methods for stand-alone 3D models when the available boundary data are not enough to ensure the mathematical well posedness. These so-called "defective problems" naturally arise in practical applications of clinical relevance but also because of the interface coupling of heterogeneous problems that are generated by the geometric multiscale process. We also describe specific issues related to the boundary treatment of reduced models, particularly relevant to the geometric multiscale coupling. Next, we detail the most popular numerical algorithms for the solution of the coupled problems. Finally, we review some of the most representative works-from different research groups-which addressed the geometric multiscale approach in the past years. A proper treatment of the different scales relevant to the hemodynamics and their interplay is essential for the accuracy of numerical simulations and eventually for their clinical impact. This paper aims at providing a state-of-the-art picture of these topics, where the gap between theory and practice demands rigorous mathematical models to be reliably filled. (C) 2016 Elsevier B.V. All rights reserved.

[1]  Christian Vergara,et al.  Nitsche’s Method for Defective Boundary Value Problems in Incompressibile Fluid-dynamics , 2011, J. Sci. Comput..

[2]  W.,et al.  Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .

[3]  S. Sherwin,et al.  Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. , 2007, Journal of biomechanics.

[4]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[5]  T. Bodnár,et al.  Fluid-structure interaction and biomedical applications , 2014 .

[6]  A. Quarteroni,et al.  Coupling between lumped and distributed models for blood flow problems , 2001 .

[7]  Pablo J. Blanco,et al.  A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. , 2013, Medical engineering & physics.

[8]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[9]  M. Bock,et al.  Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement. , 2000, Physics in medicine and biology.

[10]  W. P. Timlake,et al.  A theory of fluid flow in compliant tubes. , 1966, Biophysical journal.

[11]  R. Ogden,et al.  Constitutive modelling of arteries , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  A. Veneziani,et al.  Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem , 2013 .

[13]  P. Niederer,et al.  A viscoelastic model for use in predicting arterial pulse waves. , 1980, Journal of biomechanical engineering.

[14]  N. Stergiopulos,et al.  Total arterial inertance as the fourth element of the windkessel model. , 1999, American journal of physiology. Heart and circulatory physiology.

[15]  Vaidy S. Sunderam,et al.  Experiences with Target-Platform Heterogeneity in Clouds, Grids, and On-Premises Resources , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.

[16]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[17]  Krasimir P. Ivanov,et al.  Combined distributed and lumped parameters model for transient flow analysis in complex pipe networks , 1996 .

[18]  Pablo J. Blanco,et al.  Partitioned Analysis for Dimensionally-Heterogeneous Hydraulic Networks , 2011, Multiscale Model. Simul..

[19]  Alessandro Veneziani,et al.  Inverse problems in Cardiovascular Mathematics: toward patient‐specific data assimilation and optimization , 2013, International journal for numerical methods in biomedical engineering.

[20]  Christian Vergara,et al.  A New Approach to Numerical Solution of Defective Boundary Value Problems in Incompressible Fluid Dynamics , 2008, SIAM J. Numer. Anal..

[21]  Giovanna Rizzo,et al.  Womersley number-based estimates of blood flow rate in Doppler analysis: In vivo validation by means of Phase Contrast Magnetic Resonance Imaging , 2010 .

[22]  Vaidy S. Sunderam,et al.  Platform and algorithm effects on computational fluid dynamics applications in life sciences , 2017, Future Gener. Comput. Syst..

[23]  Lucas O Müller,et al.  A global multiscale mathematical model for the human circulation with emphasis on the venous system , 2014, International journal for numerical methods in biomedical engineering.

[24]  Alison L. Marsden,et al.  A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations , 2013, J. Comput. Phys..

[25]  Pablo J. Blanco,et al.  On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems , 2013, J. Comput. Phys..

[26]  Y. Fung,et al.  Pseudoelasticity of arteries and the choice of its mathematical expression. , 1979, The American journal of physiology.

[27]  Alessandro Veneziani,et al.  A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics , 2011, Journal of Scientific Computing.

[28]  G E Karniadakis,et al.  LARGE‐SCALE SIMULATION OF THE HUMAN ARTERIAL TREE , 2009, Clinical and experimental pharmacology & physiology.

[29]  F. Nobile,et al.  ADJOINT-BASED PARAMETER ESTIMATION IN HUMAN VASCULAR ONE DIMENSIONAL MODELS , 2013 .

[30]  T. Kenner,et al.  Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models , 2006, Medical and Biological Engineering and Computing.

[31]  S. Sherwin,et al.  One-dimensional modelling of a vascular network in space-time variables , 2003 .

[32]  A. Veneziani,et al.  Estimation of cardiac conductivities in ventricular tissue by a variational approach , 2015 .

[33]  F. Migliavacca,et al.  Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. , 2006, Journal of biomechanics.

[34]  Adélia Sequeira,et al.  Absorbing boundary conditions for a 3D non-Newtonian fluid–structure interaction model for blood flow in arteries , 2010 .

[35]  Christian Vergara,et al.  An approximate method for solving incompressible Navier–Stokes problems with flow rate conditions , 2007 .

[36]  Christian Vergara,et al.  Multiscale modeling and simulation of drug release from cardiovascular stents , 2008 .

[37]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[38]  Will Cousins,et al.  Boundary conditions for hemodynamics: The structured tree revisited , 2012, J. Comput. Phys..

[39]  Xiao-Chuan Cai,et al.  Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling , 2010, J. Comput. Phys..

[40]  A. Avolio,et al.  Multi-branched model of the human arterial system , 1980, Medical and Biological Engineering and Computing.

[41]  Alfio Quarteroni,et al.  Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations , 2003, Multiscale Model. Simul..

[42]  Lucas O Müller,et al.  Well-balanced high-order solver for blood flow in networks of vessels with variable properties. , 2013, International journal for numerical methods in biomedical engineering.

[43]  Miguel A. Fernández,et al.  A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid , 2007 .

[44]  Dongbin Xiu,et al.  Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network , 2007, J. Comput. Phys..

[45]  A Noordergraaf,et al.  Analog studies of the human systemic arterial tree. , 1969, Journal of biomechanics.

[46]  Pedro A. Lemos,et al.  An Anatomically Detailed Arterial Network Model for One-Dimensional Computational Hemodynamics , 2015, IEEE Transactions on Biomedical Engineering.

[47]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[48]  Paolo Zunino,et al.  Numerical approximation of incompressible flows with net flux defective boundary conditions by means of penalty techniques , 2009 .

[49]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[50]  J-F Gerbeau,et al.  A methodological paradigm for patient‐specific multi‐scale CFD simulations: from clinical measurements to parameter estimates for individual analysis , 2014, International journal for numerical methods in biomedical engineering.

[51]  Fabio Nobile,et al.  Time accurate partitioned algorithms for the solution of fluid–structure interaction problems in haemodynamics , 2013 .

[52]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[53]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[54]  W. Rudin Real and complex analysis , 1968 .

[55]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .

[56]  Mette S Olufsen,et al.  Structured tree outflow condition for blood flow in larger systemic arteries. , 1999, American journal of physiology. Heart and circulatory physiology.

[57]  Lawrence C. Cerny,et al.  Leonhardi Euleri's “Principia pro motu sanguinis per arterias determinando” , 1974 .

[58]  D. Liepsch,et al.  Flow Characteristics in an Anatomically Realistic Compliant Carotid Artery Bifurcation Model. , 1999, Computer methods in biomechanics and biomedical engineering.

[59]  Fabio Nobile,et al.  Fluid Structure Interaction in Blood Flow Problems , 1999 .

[60]  Charles A. Taylor,et al.  On Coupling a Lumped Parameter Heart Model and a Three-Dimensional Finite Element Aorta Model , 2009, Annals of Biomedical Engineering.

[61]  A Porpora,et al.  Numerical treatment of boundary conditions to replace lateral branches in hemodynamics , 2012, International journal for numerical methods in biomedical engineering.

[62]  P. M. Naghdi,et al.  A direct theory of viscous fluid flow in pipes II. Flow of incompressible viscous fluid in curved pipes , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[63]  Vincent J. Ervin,et al.  Numerical Approximation of a Quasi-Newtonian Stokes Flow Problem with Defective Boundary Conditions , 2007, SIAM J. Numer. Anal..

[64]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[65]  Jordi Alastruey,et al.  A benchmark study of numerical schemes for one‐dimensional arterial blood flow modelling , 2015, International journal for numerical methods in biomedical engineering.

[66]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[67]  Pablo J. Blanco,et al.  Assessing the influence of heart rate in local hemodynamics through coupled 3D‐1D‐0D models , 2010 .

[68]  Alejandro F. Frangi,et al.  A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network , 2016, J. Comput. Phys..

[69]  Alberto Redaelli,et al.  Reliable CFD-based estimation of flow rate in haemodynamics measures. , 2006, Ultrasound in medicine & biology.

[70]  Pablo J. Blanco,et al.  A two-level time step technique for the partitioned solution of one-dimensional arterial networks , 2012 .

[71]  W A Wall,et al.  Prestressing in finite deformation abdominal aortic aneurysm simulation. , 2009, Journal of biomechanics.

[72]  Alfio Quarteroni,et al.  Modeling and simulation of blood flow problems , 1997 .

[73]  P Cliffe,et al.  Mathematics in Medicine and the Life Sciences. , 1967 .

[74]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[75]  Simona Perotto,et al.  One-Dimensional Surrogate Models for Advection-Diffusion Problems , 2013, ENUMATH.

[76]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[77]  H. Lee Optimal control for quasi-Newtonian flows with defective boundary conditions , 2011 .

[78]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[79]  O Frank,et al.  The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899. , 1990, Journal of molecular and cellular cardiology.

[80]  L. Formaggia,et al.  Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart , 2006, Computer methods in biomechanics and biomedical engineering.

[81]  Simona Perotto,et al.  Coupled Model and Grid Adaptivity in Hierarchical Reduction of Elliptic Problems , 2014, J. Sci. Comput..

[82]  Ryutaro Himeno,et al.  Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses , 2009, Medical & Biological Engineering & Computing.

[83]  Karim Azer,et al.  A One-dimensional Model of Blood Flow in Arteries with Friction and Convection Based on the Womersley Velocity Profile , 2007, Cardiovascular engineering.

[84]  L. Antiga,et al.  Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. , 2010, Artificial organs.

[85]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[86]  W. Wall,et al.  Truly monolithic algebraic multigrid for fluid–structure interaction , 2011 .

[87]  A. Quarteroni,et al.  One-dimensional models for blood flow in arteries , 2003 .

[88]  L. Antiga,et al.  Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. , 2012, Artificial organs.

[89]  A. Schiela,et al.  Variational analysis of the coupling between a geometrically exact Cosserat rod and an elastic continuum , 2014 .

[90]  M. Reddy,et al.  MEASURING BLOOD FLOW: TECHNIQUES AND APPLICATIONS - A REVIEW , 2011 .

[91]  Spencer J. Sherwin,et al.  Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system , 2003 .

[92]  Christian Vergara,et al.  Computational study of the fluid-dynamics in carotids before and after endarterectomy. , 2016, Journal of biomechanics.

[93]  Anne M. Robertson,et al.  A DIRECTOR THEORY APPROACH FOR MODELING BLOOD FLOW IN THE ARTERIAL SYSTEM: AN ALTERNATIVE TO CLASSICAL 1D MODELS , 2005 .

[94]  Fabio Nobile,et al.  Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics , 2014, J. Comput. Phys..

[95]  S. Perotto A Survey of Hierarchical Model (Hi-Mod) Reduction Methods for Elliptic Problems , 2014 .

[96]  Alfio Quarteroni,et al.  Analysis of a Geometrical Multiscale Blood Flow Model Based on the Coupling of ODEs and Hyperbolic PDEs , 2005, Multiscale Model. Simul..

[97]  Jing Wan,et al.  A One-dimensional Finite Element Method for Simulation-based Medical Planning for Cardiovascular Disease , 2002, Computer methods in biomechanics and biomedical engineering.

[98]  Alfio Quarteroni,et al.  On the physical consistency between three-dimensional and one-dimensional models in haemodynamics , 2013, J. Comput. Phys..

[99]  Christian Vergara,et al.  Flow rate boundary problems for an incompressible fluid in deformable domains: Formulations and solution methods , 2010 .

[100]  F. Migliavacca,et al.  Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. , 2005, Journal of biomechanics.

[101]  Alessandro Veneziani,et al.  Data Assimilation in Cardiovascular Fluid–Structure Interaction Problems: An Introduction , 2014 .

[102]  Charles A. Taylor,et al.  Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries , 2004 .

[103]  Alfio Quarteroni,et al.  Modeling dimensionally-heterogeneous problems: analysis, approximation and applications , 2011, Numerische Mathematik.

[104]  G. Karniadakis,et al.  Outflow Boundary Conditions for Arterial Networks with Multiple Outlets , 2008, Annals of Biomedical Engineering.

[105]  Alfio Quarteroni,et al.  A 3D/1D geometrical multiscale model of cerebral vasculature , 2009 .

[106]  Martin J. Leahy,et al.  Measurement of the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography: Validation against fractional flow reserve , 2014, International journal of cardiology. Heart & vasculature.

[107]  Christian Vergara,et al.  Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid–structure interaction , 2015, Numerische Mathematik.

[108]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[109]  Eleuterio F. Toro,et al.  Flow in Collapsible Tubes with Discontinuous Mechanical Properties: Mathematical Model and Exact Solutions , 2013 .

[110]  Alfio Quarteroni,et al.  Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics , 2014, J. Comput. Appl. Math..

[111]  Pablo J. Blanco,et al.  A variational approach for coupling kinematically incompatible structural models , 2008 .

[112]  Alison L. Marsden,et al.  Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation , 2015 .

[113]  F. N. Vosse,et al.  A wave propagation model of blood flow in large vessels using an approximate velocity profile function , 2007, Journal of Fluid Mechanics.

[114]  Alfio Quarteroni,et al.  Multiscale modelling of the circulatory system: a preliminary analysis , 1999 .

[115]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[116]  Aly A. Farag,et al.  A Non-invasive Method for Measuring Blood Flow Rate in Superficial Veins from a Single Thermal Image , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[117]  Leo G. Rebholz,et al.  Approximation of viscoelastic flows with defective boundary conditions , 2012 .

[118]  W. R. Taylor,et al.  Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. , 2012, Journal of biomechanical engineering.

[119]  S. Sherwin,et al.  Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements , 2011, Journal of biomechanics.

[120]  Simona Perotto,et al.  Adaptive Geometrical Multiscale Modeling for Hydrodynamic Problems , 2013 .

[121]  P. Fabrie,et al.  EFFECTIVE DOWNSTREAM BOUNDARY CONDITIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1994 .

[122]  Anne M. Robertson,et al.  Rheological models for blood , 2009 .

[123]  J-F Gerbeau,et al.  External tissue support and fluid–structure simulation in blood flows , 2012, Biomechanics and modeling in mechanobiology.

[124]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[125]  L. Antiga,et al.  On the overestimation of early wall thickening at the carotid bulb by black blood MRI, with implications for coronary and vulnerable plaque imaging , 2008, Magnetic resonance in medicine.

[126]  A. Yoganathan,et al.  Patient-Specific Surgery Planning for the Fontan Procedure , 2013 .

[127]  R. Ogden,et al.  A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models , 2000 .

[128]  M E Clark,et al.  A circle of Willis simulation using distensible vessels and pulsatile flow. , 1985, Journal of biomechanical engineering.

[129]  Luca Antiga,et al.  Impact of hemodynamics on lumen boundary displacements in abdominal aortic aneurysms by means of dynamic computed tomography and computational fluid dynamics , 2013, Biomechanics and modeling in mechanobiology.

[130]  Timothy J. Pedley,et al.  The fluid mechanics of large blood vessels , 1980 .

[131]  Ulhas P. Naik,et al.  Efficient implementation of the proper outlet flow conditions in blood flow simulations through asymmetric arterial bifurcations , 2011 .

[132]  R. LeVeque Numerical methods for conservation laws , 1990 .

[133]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[134]  George Papadakis,et al.  Coupling 3D and 1D fluid–structure‐interaction models for wave propagation in flexible vessels using a finite volume pressure‐correction scheme , 2009 .

[135]  Dorin Comaniciu,et al.  A parameter estimation framework for patient-specific hemodynamic computations , 2015, J. Comput. Phys..

[136]  Marina Piccinelli,et al.  Applications of variational data assimilation in computational hemodynamics , 2012 .

[137]  M L Raghavan,et al.  Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. , 2000, Journal of biomechanics.

[138]  Paolo Crosetto,et al.  Implicit Coupling of One-Dimensional and Three-Dimensional Blood Flow Models with Compliant Vessels , 2013, Multiscale Model. Simul..

[139]  Christian Vergara,et al.  Prescription of General Defective Boundary Conditions in Fluid-Dynamics , 2012 .

[140]  We Wie Elementary Differential Equations and Boundary Value Problems , 1977 .

[141]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[142]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[143]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[144]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[145]  N. Stergiopulos,et al.  Validation of a one-dimensional model of the systemic arterial tree. , 2009, American journal of physiology. Heart and circulatory physiology.

[146]  L. Formaggia,et al.  On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations , 2007 .

[147]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[148]  E. Kuh,et al.  The state-variable approach to network analysis , 1965 .

[149]  Johnny T. Ottesen,et al.  Applied Mathematical Models in Human Physiology , 2004 .

[150]  B. Hillen,et al.  A mathematical model of the flow in the circle of Willis. , 1986, Journal of biomechanics.

[151]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[152]  N. Stergiopulos,et al.  Assessment of distributed arterial network models , 1997, Medical and Biological Engineering and Computing.

[153]  Berend E. Westerhof,et al.  The arterial Windkessel , 2009, Medical & Biological Engineering & Computing.

[154]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[155]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[156]  David N. Ku,et al.  Simple calculation of the velocity profiles for pulsatile flow in a blood vessel using mathematica , 2006, Annals of Biomedical Engineering.

[157]  A. Veneziani,et al.  A model reduction approach for the variational estimation of vascular compliance by solving an inverse fluid–structure interaction problem , 2014 .

[158]  Luca Formaggia,et al.  Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels , 2006, Networks Heterog. Media.

[159]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[160]  K. Sagawa The ventricular pressure-volume diagram revisited. , 1978, Circulation research.

[161]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[162]  Keith Galvin,et al.  Analysis and approximation of the Cross model for quasi-Newtonian flows with defective boundary conditions , 2013, Appl. Math. Comput..

[163]  Vaidy S. Sunderam,et al.  Experiences with Cost and Utility Trade-offs on IaaS Clouds, Grids, and On-Premise Resources , 2014, 2014 IEEE International Conference on Cloud Engineering.

[164]  C. Vergara,et al.  Flow rate defective boundary conditions in haemodynamics simulations , 2005 .

[165]  M. L. Raghavan,et al.  Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. , 2007, Journal of biomechanics.

[166]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[167]  Vaidy S. Sunderam,et al.  Issues in Communication Heterogeneity for Message-Passing Concurrent Computing , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[168]  Pablo J Blanco,et al.  On the effect of preload and pre-stretch on hemodynamic simulations: an integrative approach , 2015, Biomechanics and Modeling in Mechanobiology.

[169]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[170]  P. Fabrie,et al.  New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result , 1996 .

[171]  Eleuterio F. Toro,et al.  Brain venous haemodynamics, neurological diseases and mathematical modelling. A review , 2016, Appl. Math. Comput..

[172]  CHRISTIAN VERGARA,et al.  Multiscale Boundary Conditions for Drug Release from Cardiovascular Stents , 2008, Multiscale Model. Simul..

[173]  G. W. Hedstrom,et al.  Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems , 1979 .

[174]  M. Cadioli,et al.  In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging , 2009, Annals of Biomedical Engineering.

[175]  Thomas J. R. Hughes,et al.  On the one-dimensional theory of blood flow in the larger vessels , 1973 .

[176]  Pablo J Blanco,et al.  A black‐box decomposition approach for coupling heterogeneous components in hemodynamics simulations , 2013, International journal for numerical methods in biomedical engineering.

[177]  R Pietrabissa,et al.  A mathematical model of circulation in the presence of the bidirectional cavopulmonary anastomosis in children with a univentricular heart. , 1997, Medical engineering & physics.

[178]  Alberto Redaelli,et al.  Womersley number-based estimation of flow rate with Doppler ultrasound: Sensitivity analysis and first clinical application , 2010, Comput. Methods Programs Biomed..

[179]  R N Vaishnav,et al.  Compressibility of the Arterial Wall , 1968, Circulation research.

[180]  F. N. van de Vosse,et al.  Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. , 2007, Journal of biomechanics.

[181]  Joris Degroote,et al.  A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels , 2013, J. Comput. Appl. Math..

[182]  Alessandro Veneziani,et al.  Reduced models of the cardiovascular system , 2009 .

[183]  L. Formaggia,et al.  Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions? , 2009, Computer methods in biomechanics and biomedical engineering.

[184]  Thomas J. R. Hughes,et al.  In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts , 2003, IEEE Transactions on Biomedical Engineering.

[185]  P. Blanco,et al.  On the potentialities of 3D-1D coupled models in hemodynamics simulations. , 2009, Journal of biomechanics.

[186]  Simona Perotto,et al.  Hierarchical Local Model Reduction for Elliptic Problems: A Domain Decomposition Approach , 2010, Multiscale Model. Simul..

[187]  T. Korakianitis,et al.  Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. , 2006, Journal of biomechanics.

[188]  Jean-Frédéric Gerbeau,et al.  Parameter identification for a one-dimensional blood flow model , 2005 .

[189]  Miguel A. Fernández,et al.  Fractional-Step Schemes for the Coupling of Distributed and Lumped Models in Hemodynamics , 2013, SIAM J. Sci. Comput..

[190]  P. Blanco,et al.  A unified variational approach for coupling 3D-1D models and its blood flow applications , 2007 .

[191]  Alfio Quarteroni,et al.  FaCSI: A block parallel preconditioner for fluid-structure interaction in hemodynamics , 2016, J. Comput. Phys..

[192]  Luca Gerardo-Giorda,et al.  Analysis and Optimization of Robin-Robin Partitioned Procedures in Fluid-Structure Interaction Problems , 2010, SIAM J. Numer. Anal..

[193]  G. Karniadakis,et al.  Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study , 2010, Annals of Biomedical Engineering.

[194]  Daniel J. Arrigo,et al.  An Introduction to Partial Differential Equations , 2017, An Introduction to Partial Differential Equations.

[195]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[196]  Christian Vergara,et al.  A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem , 2011, SIAM J. Sci. Comput..

[197]  O. Pironneau,et al.  Navier-Stokes equations with imposed pressure and velocity fluxes , 1995 .

[198]  R Pietrabissa,et al.  Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. , 2002, Biorheology.

[199]  A. Quarteroni,et al.  On the coupling of 1D and 3D diffusion-reaction equations. Applications to tissue perfusion problems , 2008 .

[200]  Céline Grandmont Analyse mathématique et numérique de quelques problèmes d'intéraction fluide-structure , 1998 .

[201]  Y. Maday Analysis of coupled models for fluid-structure interaction of internal flows , 2009 .

[202]  S. Savader,et al.  Volumetric evaluation of blood flow in normal renal arteries with a Doppler flow wire: a feasibility study. , 1997, Journal of vascular and interventional radiology : JVIR.

[203]  S. Salsa Partial Differential Equations in Action: From Modelling to Theory , 2010 .

[204]  A. Veneziani,et al.  TR-2013-007 Variational Estimation of Cardiac Conductivities by a Data Assimilation Procedure , 2013 .

[205]  Fabio Nobile,et al.  Partitioned Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2012, Milan Journal of Mathematics.

[206]  David A. Steinman,et al.  From image data to computational domains , 2009 .

[207]  Jean-Frédéric Gerbeau,et al.  Algorithms for fluid-structure interaction problems , 2009 .

[208]  E. Miglio,et al.  Model coupling techniques for free-surface flow problems: Part II , 2005 .

[209]  L. Heltai,et al.  A finite element approach to the immersed boundary method , 2003 .

[210]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[211]  Giovanna Rizzo,et al.  Womersley Number-Based Estimates of Blood Flow Rate in Doppler Analysis: In Vivo Validation by Means of Phase-Contrast MRI , 2010, IEEE Transactions on Biomedical Engineering.

[212]  Sophia Mã ¶ ller,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .

[213]  Raúl A. Feijóo,et al.  Hybrid element-based approximation for the Navier–Stokes equations in pipe-like domains , 2015 .

[214]  G. Kassab,et al.  Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. , 2007, American journal of physiology. Heart and circulatory physiology.

[215]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .

[216]  M. Olufsen,et al.  Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions , 2000, Annals of Biomedical Engineering.

[217]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[218]  K. Bathe,et al.  Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction , 2009 .

[219]  L. Boxt McDonald's blood flow in arteries , 1991, CardioVascular and Interventional Radiology.

[220]  Nikolaos Stergiopulos,et al.  The four-element Windkessel model , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[221]  P. Moireau,et al.  Sequential parameter estimation for fluid–structure problems: Application to hemodynamics , 2012, International journal for numerical methods in biomedical engineering.