Secrecy Performance of Correlated $\alpha$ - $\mu$ Fading Channels

This letter investigates the secrecy performance of the classical Wyner’s wiretap model, where the main channel and eavesdropper channel experience correlated $\alpha $ - $\mu $ fading. Novel and exact expressions for the average secrecy capacity and secrecy outage probability are derived for the considered realistic scenario. The effect of correlation has been studied on the secrecy performance. Useful insights into the system performance are obtained through the asymptotic analysis.

[1]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[2]  Xiqi Gao,et al.  A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead , 2018, IEEE Journal on Selected Areas in Communications.

[3]  G. Arfken Mathematical Methods for Physicists , 1967 .

[4]  Victor Adamchik,et al.  The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system , 1990, ISSAC '90.

[5]  K. Gupta,et al.  An integral involving generalized function of two variables , 1972 .

[6]  Aashish Mathur,et al.  On Physical Layer Security of Double Rayleigh Fading Channels for Vehicular Communications , 2018, IEEE Wireless Communications Letters.

[7]  P. R. Nelson The algebra of random variables , 1979 .

[8]  Michel Daoud Yacoub,et al.  On the Mulitvariate alpha-mu Distribution with Arbitrary Correlation and Fading Parameters , 2008, 2008 IEEE International Conference on Communications.

[9]  I. S. Ansari,et al.  Secrecy Capacity Analysis Over $\alpha - \mu $ Fading Channels , 2017, IEEE Communications Letters.

[10]  Georges Kaddoum,et al.  Performance analysis of physical layer security over α–μ fading channel , 2016 .

[11]  Joseph M. Kahn,et al.  Fading correlation and its effect on the capacity of multielement antenna systems , 2000, IEEE Trans. Commun..

[12]  Hyuckjae Lee,et al.  Bounds on Secrecy Capacity Over Correlated Ergodic Fading Channels at High SNR , 2011, IEEE Transactions on Information Theory.

[13]  Simon L. Cotton,et al.  Secrecy Capacity Analysis Over κ-μ Fading Channels: Theory and Applications , 2015, IEEE Trans. Commun..

[14]  Nuwan S. Ferdinand,et al.  Physical Layer Secrecy Performance of TAS Wiretap Channels with Correlated Main and Eavesdropper Channels , 2014, IEEE Wireless Communications Letters.

[15]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[16]  M. Yacoub,et al.  On the multivariate Nakagami-m distribution with arbitrary correlation and fading parameters , 2007, 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference.

[17]  Yunfei Chen,et al.  Physical-Layer Security Over Non-Small-Scale Fading Channels , 2016, IEEE Transactions on Vehicular Technology.

[18]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[19]  M.D. Yacoub,et al.  The $\alpha$-$\mu$ Distribution: A Physical Fading Model for the Stacy Distribution , 2007, IEEE Transactions on Vehicular Technology.

[20]  Kostas Peppas,et al.  A New Formula for the Average Bit Error Probability of Dual-Hop Amplify-and-Forward Relaying Systems over Generalized Shadowed Fading Channels , 2012, IEEE Wireless Communications Letters.

[21]  Manav R. Bhatnagar,et al.  On Physical Layer Security of α-η-κ-μ Fading Channels , 2018, IEEE Commun. Lett..