Microscopic description for the emergence of collective dissipation in extended quantum systems

Practical implementations of quantum technology are limited by unavoidable effects of decoherence and dissipation. With achieved experimental control for individual atoms and photons, more complex platforms composed by several units can be assembled enabling distinctive forms of dissipation and decoherence, in independent heat baths or collectively into a common bath, with dramatic consequences for the preservation of quantum coherence. The cross-over between these two regimes has been widely attributed in the literature to the system units being farther apart than the bath’s correlation length. Starting from a microscopic model of a structured environment (a crystal) sensed by two bosonic probes, here we show the failure of such conceptual relation, and identify the exact physical mechanism underlying this cross-over, displaying a sharp contrast between dephasing and dissipative baths. Depending on the frequency of the system and, crucially, on its orientation with respect to the crystal axes, collective dissipation becomes possible for very large distances between probes, opening new avenues to deal with decoherence in phononic baths.

[1]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[2]  Laurent Sanchez-Palencia,et al.  Disordered quantum gases under control , 2009, 0911.0629.

[3]  Emilio Hernández-García,et al.  Synchronization, quantum correlations and entanglement in oscillator networks , 2013, Scientific Reports.

[4]  B. Chen,et al.  Topological modes bound to dislocations in mechanical metamaterials , 2014, Nature Physics.

[5]  M. Paternostro,et al.  Reconfigurable long-range phonon dynamics in optomechanical arrays. , 2013, Physical review letters.

[6]  David J. Wineland,et al.  Surface science for improved ion traps , 2013 .

[7]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Daniel A. Lidar,et al.  Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling , 2012, 1208.5791.

[9]  Ruggero Vasile,et al.  Spectral origin of non-Markovian open-system dynamics: A finite harmonic model without approximations , 2014 .

[10]  R. Aguado,et al.  Entanglement between charge qubits induced by a common dissipative environment , 2007, 0710.3576.

[11]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[12]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[13]  J. Eckel,et al.  Quantum coherent biomolecular energy transfer with spatially correlated fluctuations , 2010, 1003.3857.

[14]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[15]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[16]  H. Jürgensen Synchronization , 2021, Inf. Comput..

[17]  Jan Jeske,et al.  Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit , 2014 .

[18]  F. Marquardt,et al.  Topological Phases of Sound and Light , 2014, 1409.5375.

[19]  U. Dorner,et al.  Quantum frequency estimation with trapped ions and atoms , 2011, 1102.1361.

[20]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[21]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[22]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[23]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[24]  A. Olaya-Castro,et al.  Quantum State Tuning of Energy Transfer in a Correlated Environment , 2009, 0907.5183.

[25]  J. Eisert,et al.  Observation of non-Markovian micromechanical Brownian motion , 2013, Nature Communications.

[26]  Markus Muller,et al.  Quantifying spatial correlations of general quantum dynamics , 2014, 1409.1770.

[27]  U. Weiss Quantum Dissipative Systems , 1993 .

[28]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[29]  R. Rubin,et al.  MOMENTUM AUTOCORRELATION FUNCTIONS AND ENERGY TRANSPORT IN HARMONIC CRYSTALS CONTAINING ISOTOPIC DEFECTS , 1963 .

[30]  Erick Ulin-Avila,et al.  Surface noise analysis using a single-ion sensor , 2014 .

[31]  Guanhua Chen,et al.  Two oscillators in a dissipative bath , 2003 .

[32]  B. M. Fulk MATH , 1992 .

[33]  Francesco Petruccione,et al.  Concepts and Methods in the Theory of Open Quantum Systems , 2003, quant-ph/0302047.

[34]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[35]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[36]  Jan Jeske,et al.  Quantum metrology in the presence of spatially correlated noise: Restoring Heisenberg scaling , 2013, 1307.6301.

[37]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[38]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[39]  Martijn Wubs,et al.  Limitation of entanglement due to spatial qubit separation , 2006 .

[40]  J. Cole,et al.  Derivation of Markovian master equations for spatially correlated decoherence , 2013, 1301.1381.

[41]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[42]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[43]  P. Zoller,et al.  Continuous mode cooling and phonon routers for phononic quantum networks , 2012, 1205.7008.

[44]  Thomas Zell,et al.  Distance dependence of entanglement generation via a bosonic heat bath. , 2008, Physical review letters.

[45]  J. Ignacio Cirac,et al.  Universal Quantum Transducers Based on Surface Acoustic Waves , 2015, 1504.05127.

[46]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[47]  A. Fisher,et al.  Long-lived spin entanglement induced by a spatially correlated thermal bath , 2008, 0807.2202.

[48]  Jakub S. Prauzner-Bechcicki,et al.  LETTER TO THE EDITOR: Two-mode squeezed vacuum state coupled to the common thermal reservoir , 2002 .

[49]  J. Cirac,et al.  Quantum manipulation of trapped ions in two dimensional coulomb crystals. , 2006, Physical review letters.

[50]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[51]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[52]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[53]  J. Paz,et al.  Dynamics of the entanglement between two oscillators in the same environment. , 2008, Physical review letters.

[54]  Masoud Mohseni,et al.  Role of quantum coherence and environmental fluctuations in chromophoric energy transport. , 2008, The journal of physical chemistry. B.

[55]  David Poulin,et al.  Characterizing the structure of preserved information in quantum processes. , 2008, Physical review letters.

[56]  M. Tiwari Lattice dynamics of gold , 1975 .