Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems

[1]  P. Ciais,et al.  A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change , 2019, Nature Ecology & Evolution.

[2]  Nadejda A. Soudzilovskaia,et al.  Global change effects on plant communities are magnified by time and the number of global change factors imposed , 2019, Proceedings of the National Academy of Sciences.

[3]  J. Elser,et al.  The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. , 2018, The Science of the total environment.

[4]  M. Litvak,et al.  Climate sensitivity functions and net primary production: A framework for incorporating climate mean and variability. , 2018, Ecology.

[5]  Zheng Fu,et al.  Interannual variability of ecosystem carbon exchange: From observation to prediction , 2017 .

[6]  Kerry M. Byrne,et al.  Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments , 2017, Global change biology.

[7]  P. Ciais,et al.  Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. , 2017, The New phytologist.

[8]  Meghan L. Avolio,et al.  Nutrient additions cause divergence of tallgrass prairie plant communities resulting in loss of ecosystem stability , 2016 .

[9]  E. Borer,et al.  Addition of multiple limiting resources reduces grassland diversity , 2016, Nature.

[10]  Marc Macias-Fauria,et al.  Sensitivity of global terrestrial ecosystems to climate variability , 2016, Nature.

[11]  Cynthia S. Brown,et al.  Drivers of Variation in Aboveground Net Primary Productivity and Plant Community Composition Differ Across a Broad Precipitation Gradient , 2016, Ecosystems.

[12]  J. Blair,et al.  Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?. , 2015, Ecology.

[13]  T. M. Bezemer,et al.  Biodiversity increases the resistance of ecosystem productivity to climate extremes , 2015, Nature.

[14]  A. Knapp,et al.  Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. , 2015, Ecology.

[15]  Louie H. Yang,et al.  Grassland productivity limited by multiple nutrients , 2015, Nature Plants.

[16]  E. Borer,et al.  Anthropogenic environmental changes affect ecosystem stability via biodiversity , 2015, Science.

[17]  S. Frey,et al.  Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments , 2015, Oecologia.

[18]  N. Grimm,et al.  A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems , 2014 .

[19]  Meghan L. Avolio,et al.  Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above‐ground productivity in a tallgrass prairie , 2014 .

[20]  A. Knapp,et al.  Resistance and resilience of a grassland ecosystem to climate extremes , 2014 .

[21]  T. L. Dickson,et al.  Biotic mechanisms of community stability shift along a precipitation gradient. , 2014, Ecology.

[22]  Brett A. Melbourne,et al.  Herbivores and nutrients control grassland plant diversity via light limitation , 2014 .

[23]  Ellen I. Damschen,et al.  Eutrophication weakens stabilizing effects of diversity in natural grasslands , 2014, Nature.

[24]  J. Fox,et al.  Species Richness and the Temporal Stability of Biomass Production: A New Analysis of Recent Biodiversity Experiments , 2013, The American Naturalist.

[25]  O. Sala,et al.  Legacies of precipitation fluctuations on primary production: theory and data synthesis , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  Forest Isbell,et al.  Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory , 2012, Proceedings of the National Academy of Sciences.

[27]  S. Collins,et al.  Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland , 2012, Oecologia.

[28]  Susan M. Natali,et al.  Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost , 2012 .

[29]  Mark West,et al.  C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland , 2011, Nature.

[30]  S. Vicca,et al.  Do global change experiments overestimate impacts on terrestrial ecosystems? , 2011, Trends in ecology & evolution.

[31]  J. Peñuelas,et al.  Responses of terrestrial ecosystems to temperature and precipitation change: a meta‐analysis of experimental manipulation , 2011 .

[32]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[33]  Katherine L. Gross,et al.  Mechanisms contributing to stability in ecosystem function depend on the environmental context. , 2010, Ecology letters.

[34]  A. Troumbis,et al.  General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. , 2010, Ecology.

[35]  F. Clements Scientific Books: Plant Succession. An Analysis of the Development of Vegetation , 2009 .

[36]  G. Daily,et al.  Ecosystem Services in Decision Making: Time to Deliver , 2009 .

[37]  I. Côté,et al.  Quantifying the evidence for ecological synergies. , 2008, Ecology letters.

[38]  H. Reynolds,et al.  Perturbations alter community convergence, divergence, and formation of multiple community states. , 2008, Ecology.

[39]  Helmut Hillebrand,et al.  Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. , 2007, Ecology letters.

[40]  S. Carpenter,et al.  Stability and Diversity of Ecosystems , 2007, Science.

[41]  P. Reich,et al.  Biodiversity and ecosystem stability in a decade-long grassland experiment , 2006, Nature.

[42]  J. Zak,et al.  Convergence across biomes to a common rain-use efficiency , 2004, Nature.

[43]  D. Ellsworth,et al.  Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? , 2004 .

[44]  E. Solana‐Arellano,et al.  Improved leaf area index based biomass estimations for Zostera marina L. , 2003, Mathematical medicine and biology : a journal of the IMA.

[45]  S. Carpenter,et al.  Ecological forecasts: an emerging imperative. , 2001, Science.

[46]  J. K. Koelliker,et al.  Frequency and Extent of Water Limitation to Primary Production in a Mesic Temperate Grassland , 2001, Ecosystems.

[47]  G. Marion,et al.  A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming , 2001, Oecologia.

[48]  A. Knapp,et al.  Variation among biomes in temporal dynamics of aboveground primary production. , 2001, Science.

[49]  David Tilman,et al.  Biodiversity, Stability, and Productivity in Competitive Communities , 2000, The American Naturalist.

[50]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[51]  Pereira,et al.  Plant diversity and productivity experiments in european grasslands , 1999, Science.

[52]  W. Parton,et al.  Equilibration of the terrestrial water, nitrogen, and carbon cycles. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[54]  J. Downing,et al.  Biodiversity and stability in grasslands , 1996, Nature.

[55]  Benjamin Smith,et al.  A consumer's guide to evenness indices , 1996 .

[56]  J. P. Grime,et al.  Testing predictions of the resistance and resilience of vegetation subjected to extreme events , 1995 .

[57]  S. McNaughton,et al.  Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats , 1989, Nature.

[58]  W. Parton,et al.  Primary Production of the Central Grassland Region of the United States , 1988 .

[59]  M. Rejmánek,et al.  Community stability, complexity and species life history strategies , 1982, Vegetatio.

[60]  I. Noy-Meir,et al.  Desert Ecosystems: Environment and Producers , 1973 .

[61]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[62]  R. Macarthur Fluctuations of Animal Populations and a Measure of Community Stability , 1955 .

[63]  Manuel K. Schneider,et al.  Shifting Impacts of Climate Change: Long-Term Patterns of Plant Response to Elevated CO2, Drought, and Warming Across Ecosystems , 2016 .

[64]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[65]  Daniel G. Milchunas,et al.  CO2 ENHANCES PRODUCTIVITY, ALTERS SPECIES COMPOSITION, AND REDUCES DIGESTIBILITY OF SHORTGRASS STEPPE VEGETATION , 2004 .

[66]  H. Mooney,et al.  Biodiversity and ecosystem functioning in grasslands. , 1996 .

[67]  Robert F. Betz,et al.  The Tallgrass Prairie , 1992, Restoration & Management Notes.