Petrogenesis of mafic rocks from the Xigaze ophiolite, Southern Tibet: Insights into forearc extension induced by Neotethyan rollback

[1]  P. Robinson,et al.  Detachment faulting in the Xigaze ophiolite southern Tibet: New constraints on its origin and implications , 2021 .

[2]  W. Kurz,et al.  Magmatic Response to Subduction Initiation, Part II: Boninites and Related Rocks of the Izu‐Bonin Arc From IODP Expedition 352 , 2020, Geochemistry, Geophysics, Geosystems.

[3]  R. Arculus,et al.  Boninites , 2021, Encyclopedia of Geology.

[4]  Peter A. Cawood,et al.  An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean , 2020, Science Advances.

[5]  H. Furnes,et al.  Geochemical characterization of ophiolites in the Alpine-Himalayan Orogenic Belt: Magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust , 2020 .

[6]  E. al.,et al.  Forearc magmatic evolution during subduction initiation: Insights from an Early Cretaceous Tibetan ophiolite and comparison with the Izu-Bonin-Mariana forearc , 2020, GSA Bulletin.

[7]  Chi‐Yue Huang,et al.  Slab-controlled elemental–isotopic enrichments during subduction initiation magmatism and variations in forearc chemostratigraphy , 2020 .

[8]  M. Cannat,et al.  On spreading modes and magma supply at slow and ultraslow mid-ocean ridges , 2019, Earth and Planetary Science Letters.

[9]  P. DeCelles,et al.  Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses , 2019, American Journal of Science.

[10]  F. Hauff,et al.  Subduction initiation terranes exposed at the front of a 2 Ma volcanically-active subduction zone , 2019, Earth and Planetary Science Letters.

[11]  P. Kapp,et al.  History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet , 2019, Special Publications.

[12]  W. Kurz,et al.  Magmatic Response to Subduction Initiation: Part 1. Fore‐arc Basalts of the Izu‐Bonin Arc From IODP Expedition 352 , 2019, Geochemistry, geophysics, geosystems : G(3).

[13]  J. Blundy,et al.  Subduction initiation without magmatism: The case of the missing Alpine magmatic arc , 2018, Geology.

[14]  K. Haase,et al.  Petrogenesis of boninitic lavas from the Troodos Ophiolite, and comparison with Izu–Bonin–Mariana fore-arc crust , 2018, Earth and Planetary Science Letters.

[15]  B. Xia,et al.  Geochemical and zircon U–Pb age constraints on the origin of the Mesozoic Xigaze ophiolite, Yarlung Zangbo suture zone, SW China , 2018 .

[16]  I. Savov,et al.  Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin , 2018 .

[17]  I. Savov,et al.  Implications of eocene-age philippine sea and forearc basalts for initiation and early history of the izu-bonin-mariana arc , 2018 .

[18]  B. Ghosh,et al.  Clinopyroxene composition of volcanics from the Manipur Ophiolite, Northeastern India: implications to geodynamic setting , 2018, International Journal of Earth Sciences.

[19]  M. Anderson,et al.  Rapid fore-arc extension and detachment-mode spreading following subduction initiation , 2017 .

[20]  P. Robinson,et al.  Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite, Tibet: Implications for a suprasubduction zone origin , 2017 .

[21]  E. Garzanti,et al.  The birth of the Xigaze forearc basin in southern Tibet , 2017 .

[22]  Jared P. Butler,et al.  Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases , 2017 .

[23]  Tong Liu,et al.  Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet , 2016 .

[24]  C. Langmuir,et al.  Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure , 2016 .

[25]  Fu-Yuan Wu,et al.  Sr–Nd–Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting , 2016 .

[26]  W. Griffin,et al.  Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites , 2016 .

[27]  K. Hodges,et al.  Forearc hyperextension dismembered the south Tibetan ophiolites , 2015 .

[28]  L. Ding,et al.  Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc : Evidence from paleomagnetism, sediment provenance, and stratigraphy , 2015 .

[29]  S. Ji,et al.  Crustal structure of the Indus–Tsangpo suture zone and its ophiolites in southern Tibet , 2015 .

[30]  M. Searle,et al.  U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications , 2015 .

[31]  R. Taylor,et al.  Evidence for Hydrothermal Activity in the Earliest Stages of Intraoceanic Arc Formation: Implications for Ophiolite-Hosted Hydrothermal Activity , 2014 .

[32]  J. Pearce Immobile Element Fingerprinting of Ophiolites , 2014 .

[33]  Wu Fu Yarlung Zangbo ophiolite: A critical updated view , 2014 .

[34]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[35]  Chengshan Wang,et al.  Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet , 2013 .

[36]  Zhai Qing-guo,et al.  Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet , 2013 .

[37]  C. MacLeod,et al.  “Moist MORB” axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin , 2013 .

[38]  Chengshan Wang,et al.  The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys , 2012 .

[39]  G. Pan,et al.  Tectonic evolution of the Qinghai-Tibet Plateau , 2012 .

[40]  S. Umino,et al.  Eocene volcanism during the incipient stage of Izu–Ogasawara Arc: Geology and petrology of the Mukojima Island Group, the Ogasawara Islands , 2012 .

[41]  R. Stern,et al.  The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation , 2011 .

[42]  Chenguang Sun,et al.  Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature , 2010, Contributions to Mineralogy and Petrology.

[43]  D. Dunkley,et al.  Termination of backarc spreading: Zircon dating of a giant oceanic core complex , 2011 .

[44]  P. Robinson,et al.  The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting , 2010 .

[45]  Wei-Qiang Ji,et al.  Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet , 2010 .

[46]  Katherine A. Kelley,et al.  Fore‐arc basalts and subduction initiation in the Izu‐Bonin‐Mariana system , 2010 .

[47]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[48]  L. Lara,et al.  Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile , 2008 .

[49]  A. Kerr,et al.  Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram , 2007 .

[50]  Kentaro Nakamura,et al.  Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction , 2007 .

[51]  C. Langmuir,et al.  Chemical Systematics and Hydrous Melting of the Mantle in Back‐Arc Basins , 2013 .

[52]  Dunyi Liu,et al.  Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet , 2006 .

[53]  Deborah K. Smith,et al.  Widespread active detachment faulting and core complex formation near 13° N on the Mid-Atlantic Ridge , 2006, Nature.

[54]  J. Aitchison,et al.  Bainang Terrane, Yarlung–Tsangpo suture, southern Tibet (Xizang, China): a record of intra-Neotethyan subduction–accretion processes preserved on the roof of the world , 2004, Journal of the Geological Society.

[55]  F. Hauff,et al.  Sr‐Nd‐Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu‐Bonin‐Mariana subduction system , 2003 .

[56]  J. Aitchison,et al.  Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung–Tsangpo suture zone, Tibet , 2003, Journal of the Geological Society.

[57]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[58]  T. Andersen Correction of common lead in U-Pb analyses that do not report 204Pb , 2002 .

[59]  J. Malpas,et al.  Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet) , 2000 .

[60]  M. J. Bas IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks , 2000 .

[61]  J. G. Mitchell,et al.  Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey , 2000 .

[62]  D. Wyman,et al.  Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle , 1999 .

[63]  J. Mahoney,et al.  Tracing the Indian Ocean Mantle Domain Through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor , 1998 .

[64]  B. Hardarson,et al.  Thermal and chemical structure of the Iceland plume , 1997 .

[65]  P. E. Baker,et al.  Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization Beneath the South Sandwich Island Arc , 1995 .

[66]  L. Beccaluva,et al.  Clinopyroxene composition of ophiolite basalts as petrogenetic indicator , 1989 .

[67]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[68]  A. Crawford,et al.  Classification, petrogenesis and tectonic setting of boninites. , 1989 .

[69]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[70]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[71]  H. Dick,et al.  Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas , 1984 .

[72]  B. Dupré,et al.  The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere , 1981, Nature.

[73]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .

[74]  R. E. Stevens Composition of some chromites of the Western Hemisphere , 1944 .