How to Steer a Quantum System over a Schrödinger Bridge

AbstractA new approach to the steering problem for the Schrödinger equation relying on stochastic mechanics and on the theory of Schrödinger bridges is presented. Given the initial and final states ψ0 and ψ1, respectively, the desired quantum evolution is constructed with the aid of a reference quantum evolution. The Nelson process corresponding to the latter evolution is used as reference process in a Schrödinger bridge problem with marginal probability densities |ψ0|2 and |ψ1|2. This approach is illustrated by working out a simple Gaussian example. PACS: 03.65.-w

[1]  S. G. Schirmer,et al.  Efficient Algorithm for Optimal Control of Mixed-State Quantum Systems , 1999 .

[2]  K. Yasue Stochastic calculus of variations , 1981 .

[3]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[4]  Masao Nagasawa,et al.  Transformations of diffusion and Schrödinger processes , 1989 .

[5]  A. Beurling,et al.  An Automorphism of Product Measures , 1960 .

[6]  Francesco Guerra,et al.  Structural aspects of stochastic mechanics and stochastic field theory , 1981 .

[7]  Philippe Blanchard,et al.  Stochastic Processes — Mathematics and Physics II , 1986 .

[8]  S. L. Adler,et al.  Martingale models for quantum state reduction , 2001 .

[9]  H. H. Rosenbrock,et al.  Doing quantum mechanics with control theory , 2000, IEEE Trans. Autom. Control..

[10]  Hans Föllmer,et al.  Random fields and diffusion processes , 1988 .

[11]  F. Guerra,et al.  Introduction to Nelson Stochastic Mechanics as a Model for Quantum Mechanics , 1995 .

[12]  Michele Pavon A new formulation of stochastic mechanics , 1995 .

[13]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[14]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[15]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[16]  Michele Pavon,et al.  Hamilton’s principle in stochastic mechanics , 1995 .

[17]  David J. Tannor,et al.  Laser cooling of internal degrees of freedom of molecules by dynamically trapped states , 1999 .

[18]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[19]  S. G. Schirmer,et al.  Limits of control for quantum systems: Kinematical bounds on the optimization of observables and the question of dynamical realizability , 2001 .

[20]  A. Beghi,et al.  Steering a quantum system over a Schroedinger bridge , 2001 .

[21]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[22]  A. Krener,et al.  Dynamics and kinematics of reciprocal diffusions , 1993 .

[23]  Ramakrishna,et al.  Optimally designed potentials for control of electron-wave scattering in semiconductor nanodevices. , 1994, Physical review. B, Condensed matter.

[24]  Frederic T. Chong,et al.  A Practical Architecture for Reliable Quantum Computers , 2002, Computer.

[25]  Arthur J. Krener,et al.  Stochastic mechanics of reciprocal diffusions , 1996 .

[26]  Herschel Rabitz,et al.  Control of molecular motion , 1996, Proc. IEEE.

[27]  Edward Nelson Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .

[28]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[29]  A. Kolmogoroff,et al.  Zur Umkehrbarkeit der statistischen Naturgesetze , 1937 .

[30]  S. De Martino,et al.  Controlled quantum evolutions and transitions , 1999 .

[31]  Basil J. Hiley,et al.  Non-locality and locality in the stochastic interpretation of quantum mechanics , 1989 .

[32]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[33]  Zambrini Stochastic mechanics according to E. Schrödinger. , 1986, Physical review. A, General physics.

[34]  A. Perelomov Generalized coherent states and some of their applications , 1977 .

[35]  Michele Pavon Derivation of the wave function collapse in the context of Nelson’s stochastic mechanics , 1999 .

[36]  E. Schrödinger Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique , 1932 .