Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems

A honeycomb-ceramic thermal energy storage (TES) was proposed for thermal utilization of concentrating solar energy. A numerical model was developed to simulate the thermal performances, and TES experiments were carried out to demonstrate and improve the model. The outlet temperature difference between simulation and experimental results was within 5% at the end of a charging period, indicating the simulation model was reasonable. The simulation model was applied to predict the effects of geometric, thermo-physical parameters and flow fluxes on TES performances. The temperature dropped more quickly and decreased to a lower temperature in discharging period when the conductivity was smaller. The storage capacity increased with the growth of volumetric heat capacity. As to a TES with big channels and thin walls, the outlet temperature increased quickly and greatly in a charging process and dropped sharply in a discharging process.