A spintronics full adder for magnetic CPU

Spintronics devices are based on the up or down spin of the electrons rather than on electrons or holes as in the traditional semiconductor electronics devices. Magnetic processors using spintronics devices in principle are much faster and with the potential features of nonvolatile, lower power consumption and higher integration density compared with transistor-based microprocessor. Full adder is one of the most important basic units of the arithmetic/logic unit for any processors. The design of the full adder determines the speed and chip-density of a processor. In this paper, a novel spintronics full adder is proposed based on novel programmable spintronics logic devices. Only seven magnetic tunnel junction elements are needed for this full adder design.

[1]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[2]  D. K. Young,et al.  Electrical spin injection in a ferromagnetic semiconductor heterostructure , 1999, Nature.

[3]  Kazuo Nakazato,et al.  Single-electron devices , 1996 .

[4]  W. Ossau,et al.  Detection of electrical spin injection by light-emitting diodes in top- and side-emission configurations , 2003 .

[5]  Charles G. Smith,et al.  Computation Without Current , 1999, Science.

[6]  Timothy J. Moran,et al.  Magnetoresistive sensor for weak magnetic fields , 1997 .

[7]  R. Fiederling,et al.  Injection and detection of a spin-polarized current in a light-emitting diode , 1999, Nature.

[8]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[9]  H. Ohno,et al.  Electric-field control of ferromagnetism , 2000, Nature.

[10]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[11]  K. Klitzing,et al.  Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor , 2002, Nature.

[12]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[13]  Jan M. Rabaey,et al.  Digital Integrated Circuits , 2003 .

[14]  J. Lodder,et al.  Room temperature-operating spin-valve transistors formed by vacuum bonding , 1998, Science.

[15]  François Léonard,et al.  Multiple functionality in nanotube transistors. , 2002, Physical review letters.

[16]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[17]  D D Awschalom,et al.  Ferromagnetic Imprinting of Nuclear Spins in Semiconductors , 2001, Science.

[18]  K. H. Ploog,et al.  Programmable computing with a single magnetoresistive element , 2003, Nature.

[19]  Jeffrey Bokor,et al.  Extremely scaled silicon nano-CMOS devices , 2003, Proc. IEEE.

[20]  Hideo Ohno,et al.  Electrical spin injection in ferromagnetic//nonmagnetic semiconductor heterostructures , 2001 .

[21]  Nobuki Tezuka,et al.  Spin polarized tunneling in ferromagnet/insulator/ferromagnet junctions , 1995 .

[22]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[23]  Jian-Ping Wang,et al.  Programmable spintronics logic device based on a magnetic tunnel junction element , 2005 .

[24]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[25]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[26]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[27]  M. Schulz The end of the road for silicon? , 1999, Nature.

[28]  Chenming Hu,et al.  Nanoscale ultrathin body PMOSFETs with raised selective germanium source/drain , 2001 .