H∞ optimization‐based fractional‐order PID controllers design

SUMMARY In this paper we propose a fractional-order proportional-integral-derivative controller design based on the solution of an model matching problem for fractional first-order-plus-dead-time processes. Starting from the analytical solution of the problem, we show that a fractional proportional-integral-derivative suboptimal controller can be obtained. Guidelines for the tuning of the controller parameters are given in order to address the robust stability issue and to obtain the required performance. The main differences with respect to the integer-order case are highlighted. Simulation results show that the design methodology is effective and allows the user to consider process with different dynamics in a unified framework. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Ramon Vilanova,et al.  IMC based Robust PID design: Tuning guidelines and automatic tuning , 2008 .

[2]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[3]  J. Sabatier,et al.  On Fractional Systems H∞, -Norm Computation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[4]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[5]  James Lam,et al.  State feedback H ∞ control of commensurate fractional-order systems , 2014, Int. J. Syst. Sci..

[6]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[7]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[8]  Antonio Visioli,et al.  Tuning rules for optimal PID and fractional-order PID controllers , 2011 .

[9]  José António Tenreiro Machado,et al.  Fractional Order Calculus: Basic Concepts and Engineering Applications , 2010 .

[10]  Xavier Moreau,et al.  An overview of the CRONE approach in system analysis, modeling and identification, observation and control , 2008 .

[11]  Salvador Alcántara Cano Analytical design of feedback compensators based on Robustness/Performance and Servo/Regulator trade-offs. Utility in PID control applications , 2011 .

[12]  De-Jin Wang,et al.  Hinfinity design with fractional-order PDU controllers , 2012, Autom..

[13]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[14]  Mathieu Moze,et al.  On computation of H∞ norm for commensurate fractional order systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[15]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[16]  R. Rubin,et al.  Singularities of Linear System Functions , 1961 .

[17]  J. Sabatier,et al.  The CRONE aproach: Theoretical developments and major applications , 2006 .

[18]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[19]  Luigi Fortuna,et al.  New results on the synthesis of FO-PID controllers , 2010 .

[20]  Antonio Visioli,et al.  Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes , 2012 .

[21]  I. Podlubny Fractional differential equations , 1998 .

[22]  R. Gorenflo,et al.  Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.

[23]  I. Petráš Stability of Fractional-Order Systems with Rational Orders , 2008, 0811.4102.

[24]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[25]  Christophe Farges,et al.  H∞ state feedback control of commensurate fractional order systems , 2013 .

[26]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[27]  Juan J. Gude,et al.  New tuning rules for PI and fractional PI controllers , 2009 .

[28]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[29]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[30]  Bor-Sen Chen,et al.  Controller synthesis of optimal sensitivity: multivariable case , 1984 .

[31]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[32]  Vicente Feliú Batlle,et al.  Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method , 2007, IEEE Transactions on Automatic Control.

[33]  Duarte Valério,et al.  Introduction to single-input, single-output fractional control , 2011 .

[34]  Mathieu Moze,et al.  LMI Characterization of Fractional Systems Stability , 2007 .

[35]  Y. Chen,et al.  Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers , 2008 .

[36]  A. J. Calderón,et al.  Fractional PID Controllers for Industry Application. A Brief Introduction , 2007 .

[37]  Raul Rivas-Perez,et al.  Comparative Analysis of Stability and Robustness between Integer and Fractional-Order PI Controllers for First Order plus Time Delay Plants , 2011 .