Crystallization and fluorescence properties of Nd3+-doped transparent oxyfluoride glass ceramics

Abstract Nd3+-doped transparent oxyfluoride glass ceramics containing CaF2 were prepared through controlled crystallization of melt-quenched glass. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) observation revealed the precipitation of CaF2 crystallites with about 13 nm in size among the glass matrix after heat-treatment at 650 °C for 2 h. Non-isothermal investigation on CaF2 crystallization kinetics showed that the apparent activation energy Ea and Avrami exponent n are about 310 kJ/mol and 1.23, respectively, indicating the crystallization a diffusion controlled growth process with zero nucleation rate. Fluorescence measurements exhibiting a stronger emission in the glass ceramics than in the precursor glass, together with the fluorescence decay results and energy dispersive X-ray spectroscopy (EDS) analysis, evidenced the incorporation of Nd3+ into CaF2 during crystallization.

[1]  V. Lavín,et al.  Stimulated and upconverted emissions of Nd3+ in a transparent oxyfluoride glass-ceramic , 2004 .

[2]  Zhongjian Hu,et al.  Crystallization behavior and microstructure investigations on LaF3 containing oxyfluoride glass ceramics , 2005 .

[3]  J. Méndez‐Ramos,et al.  Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods , 2004 .

[4]  Setsuhisa Tanabe,et al.  Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals , 2002 .

[5]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[6]  Xianping Fan,et al.  Up-conversion and near-infrared emission of Er3+ doped transparent glass ceramics containing LaF3 nanocrystals , 2004 .

[7]  A. A. Kozlov,et al.  Picosecond, terawatt, all-Nd:glass CPA laser system , 1997 .

[8]  Younes Messaddeq,et al.  Er3+ and Eu3+ containing transparent glass ceramics in the system PbGeO3-PbF2-CdF2 , 1999 .

[9]  T. I. Chuvaeva,et al.  Radiative properties of Nd-doped transparent glass-ceramics in the lithium aluminosilicate system , 2000 .

[10]  T. Ozawa,et al.  Kinetics of non-isothermal crystallization , 1971 .

[11]  Matthew John Dejneka,et al.  The luminescence and structure of novel transparent oxyfluoride glass-ceramics , 1998 .

[12]  Brigitte Boulard,et al.  Temperature-dependent concentration quenching of Nd3+ fluorescence in fluoride glasses , 1994 .

[13]  M. Mortier,et al.  Ceramic and glass-ceramic lasers , 2003 .

[14]  Xianping Fan,et al.  Up-conversion luminescence and near infrared luminescence of Er3+ in transparent oxyfluoride glass-ceramics , 2004 .

[15]  H. Chen A method for evaluating viscosities of metallic glasses from the rates of thermal transformations , 1978 .

[16]  Junichi Ohwaki,et al.  New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion , 1993 .

[17]  Jie Fu,et al.  Eu2+ ions and CaF2-containing transparent glass-ceramics , 2002 .

[18]  Yoji Kawamoto,et al.  Upconversion luminescence of Er3+ in transparent SiO2—PbF2—ErF3 glass ceramics , 1998 .

[19]  William S. Brocklesby,et al.  Crystallisation effects on rare earth dopants in oxyfluoride glass ceramics , 2003 .

[20]  Ralph R. Jacobs,et al.  Dependence of the 4 F 3/2 → 4 I 11/2 induced-emission cross section for Nd 3+ on glass composition , 1976 .

[21]  J. Méndez‐Ramos,et al.  Dopant distribution in a Tm(3+)-Yb(3+) codoped silica based glass ceramic: an infrared-laser induced upconversion study. , 2004, The Journal of chemical physics.

[22]  L. Johnson,et al.  Coherent Emission from Rare Earth Ions in Electro‐optic Crystals , 1969 .

[23]  A. Gouveia-Neto,et al.  Upconversion luminescence in transparent glass ceramics containing β-PbF2 nanocrystals doped with erbium , 2004 .