Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS

We present the vision of back-end deposited silicon photonics (BDSP) and review works that have been done in this field. Individual aspects of BDSP platform including excimer-laser-annealed polycrystalline silicon, low-loss plasma-enhanced chemical vapor deposition silicon nitride waveguide, modulator, detector, electrical interface, back-end CMOS compatibility, and benefits of the platform are discussed in detail.

[1]  J. Orcutt,et al.  Open foundry platform for high-performance electronic-photonic integration. , 2012, Optics express.

[2]  Paul Crozat,et al.  40Gbit/s germanium waveguide photodetector on silicon , 2012, Photonics Europe.

[3]  P. Crozat,et al.  40 Gbit/s low-loss silicon optical modulator based on a pipin diode. , 2012, Optics express.

[4]  P. A. Morton,et al.  High coupling efficiency etched facet tapers in silicon , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[5]  Hui Chen,et al.  Silicon photonics: from a microresonator perspective , 2012 .

[6]  H. Zimmermann,et al.  Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. , 2012, Optics express.

[7]  Chen Sun,et al.  Addressing link-level design tradeoffs for integrated photonic interconnects , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[8]  Michal Lipson,et al.  Scalable 3D dense integration of photonics on bulk silicon. , 2011, Optics express.

[9]  G. Mashanovich,et al.  High contrast 40Gbit/s optical modulation in silicon. , 2011, Optics express.

[10]  N. Feng,et al.  36 GHz submicron silicon waveguide germanium photodetector. , 2011, Optics express.

[11]  Jie Sun,et al.  Nanophotonic integration in state-of-the-art CMOS foundries. , 2011, Optics express.

[12]  G. Fortunato,et al.  Nickel-affected silicon crystallization and silicidation on polyimide by multipulse excimer laser annealing , 2010 .

[13]  Junbo Feng,et al.  Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide. , 2010, Optics letters.

[14]  Shiyang Zhu,et al.  Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability. , 2010, Optics express.

[15]  Young-Kai Chen,et al.  Wide Bandwidth Silicon Nitride Grating Coupler , 2010, IEEE Photonics Technology Letters.

[16]  M. Lipson,et al.  Photonic devices in low-temperature laser-crystallized deposited silicon , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[17]  Ralph Delmdahl,et al.  The excimer laser: Precision engineering , 2010 .

[18]  Hannu Tenhunen,et al.  On signalling over Through-Silicon Via (TSV) interconnects in 3-D Integrated Circuits , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[19]  Samuel Palermo,et al.  Optical I/O technology for tera-scale computing , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[20]  Siva Yegnanarayanan,et al.  High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. , 2009, Optics express.

[21]  W. Yeh,et al.  Fabrication of large-grain polycrystalline Ge films using absorptive films , 2009 .

[22]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[23]  M. Geis,et al.  Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response. , 2009, Optics express.

[24]  M. Lipson,et al.  Deposited silicon high-speed integrated electro-optic modulator. , 2009, Optics express.

[25]  Qianfan Xu,et al.  Silicon microring resonators with 1.5-μm radius , 2008 .

[26]  Michal Lipson,et al.  Polysilicon photonic resonators for large-scale 3D integration of optical networks. , 2007, Optics express.

[27]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[28]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[29]  Laurent Vivien,et al.  Integration issues of a photonic layer on top of a CMOS circuit , 2006, SPIE OPTO.

[30]  Tsu-Jae King,et al.  Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices , 2005, IEEE Transactions on Electron Devices.

[31]  S. Burkett,et al.  Process integration for through-silicon vias , 2005 .

[32]  A. Chin,et al.  Effects of Excimer Laser Dopant Activation on Low Temperature Polysilicon Thin-Film Transistors with Lightly Doped Drains , 2001 .

[33]  L. Liao,et al.  Optical transmission losses in polycrystalline silicon strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength , 2000 .

[34]  D. Xu,et al.  Material aspects of nickel silicide for ULSI applications , 1998 .

[35]  Seung-Yun Lee,et al.  Improved TiN film as a diffusion barrier between copper and silicon , 1998 .

[36]  M. Matsumura,et al.  A Novel Phase-Modulated Excimer-Laser Crystallization Method of Silicon Thin Films , 1998 .

[37]  Lionel C. Kimerling,et al.  Low‐loss polycrystalline silicon waveguides for silicon photonics , 1996 .

[38]  C. N. Berglund,et al.  A unified yield model incorporating both defect and parametric effects , 1996 .

[39]  Silvano Donati,et al.  LASER & PHOTONICS REVIEWS , 2013 .

[40]  M. Lipson,et al.  Waveguide-integrated telecom-wavelength photodiode in deposited silicon. , 2011, Optics letters.

[41]  Rudy Lauwereins,et al.  Design, Automation, and Test in Europe , 2008 .

[42]  H. Bender,et al.  Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers , 2001 .

[43]  P. Zanzucchi,et al.  The role of hydrogen in heavily doped amorphous silicon , 1982 .