Exciton and carrier motion in quaternary AlInGaN

Temperature and excitation power dependences of the photoluminescence Stokes shift and bandwidth were studied in quaternary AlInGaN epilayers as a function of indium content. At low excitation power, gradual incorporation of indium into AlGaN is shown to result in S- and W-shaped temperature dependences of the band peak position and bandwidth, respectively. At high excitation power, the S- and W-behavior disappears; however, increased indium molar fraction boosts the redshift of the luminescence band at high temperatures. Our results indicate that the incorporation of indium into AlGaN has a noticeable impact on the alloy transport properties. At low temperatures and low excitation power, the indium incorporation facilitates hopping of localized excitons, whereas at high temperatures and high excitation power, it sustains free motion of delocalized carriers that results in the band-gap renormalization via screening.

[1]  Monroe,et al.  Hopping exponential band tails. , 1985, Physical review letters.

[2]  Stephan W Koch,et al.  A simple theory for the effects of plasma screening on the optical spectra of highly excited semiconductors , 1986 .

[3]  A. Reznitsky,et al.  Hopping and low-temperature photoluminescence in solid solutions and amorphous semiconductors , 1992 .

[4]  John F. Muth,et al.  Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light‐emitting diodes , 1996 .

[5]  E. Runge,et al.  Excitons in Narrow Quantum Wells: Disorder Localization and Luminescence Kinetics , 1997 .

[6]  Petr G. Eliseev,et al.  BLUE TEMPERATURE-INDUCED SHIFT AND BAND-TAIL EMISSION IN INGAN-BASED LIGHT SOURCES , 1997 .

[7]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[8]  P. Thomas,et al.  Temperature–Dependent Exciton Luminescence in Coupled Quantum Wells , 1998 .

[9]  P. Thomas,et al.  Temperature-dependent exciton luminescence in quantum wells by computer simulation , 1998 .

[10]  James S. Speck,et al.  Structural and optical properties of GaN laterally overgrown on Si(111) by metalorganic chemical vapor deposition using an AlN buffer layer , 1999 .

[11]  Michael S. Shur,et al.  Optical bandgap formation in AlInGaN alloys , 2000 .

[12]  Michael S. Shur,et al.  Lattice and energy band engineering in AlInGaN/GaN heterostructures , 2000 .

[13]  M. Shur,et al.  Dynamic behavior of hot-electron–hole plasma in highly excited GaN epilayers , 2000 .

[14]  M. Shur,et al.  Pulsed atomic layer epitaxy of quaternary AlInGaN layers , 2001 .

[15]  S. Bedair,et al.  Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells , 2001 .

[16]  K. B. Nam,et al.  Optical and electrical properties of Al-rich AlGaN alloys , 2001 .

[17]  M. Shur,et al.  Ultraviolet Light-Emitting Diodes at 340 nm using Quaternary AlInGaN Multiple Quantum Wells , 2001 .

[18]  E. Ivchenko,et al.  Energy relaxation of localized excitons at finite temperature , 2001 .

[19]  Tao Wang,et al.  1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate , 2002 .

[20]  M. Shur,et al.  Introduction to Solid-State Lighting , 2002 .

[21]  G. Simin,et al.  Pulsed Metalorganic Chemical Vapor Deposition of Quaternary AlInGaN Layers and Multiple Quantum Wells for Ultraviolet Light Emission , 2002 .

[22]  Atsuhiro Kinoshita,et al.  Marked enhancement of 320–360 nm ultraviolet emission in quaternary InxAlyGa1−x−yN with In-segregation effect , 2002 .

[23]  M. Shur,et al.  Localization and Hopping of Excitons in Quaternary AlInGaN , 2003 .