Modeling and control of a piezoelectric actuator driven system with asymmetric hysteresis

This study describes the high-precision positioning control of a system with asymmetric hysteresis. A switching system concept is adopted to describe the Preisach-type hysteresis, and a systematic modeling procedure is established to obtain the parameters of the system. A piezoelectric actuator system driven by a voltage amplifier is used to verify the modeling accuracy. A control structure, comprising a feedforward controller and a PD-type feedback controller, is used to realize the high-precision positioning control of the piezoelectric actuator driven stage. To enhance tracking control, a high-frequency modified term is incorporated into the hysteresis model. The experimental results confirm that the addition of this modified term reduces the tracking error and prevents the controlling energy from being saturated.

[1]  John A. Main,et al.  Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls , 1997 .

[2]  Santosh Devasia,et al.  Hysteresis and Vibration Compensation for Piezoactuators , 1998 .

[3]  Chun-Yi Su,et al.  Chatter suppression with adaptive control in turning metal via application of piezoactuator , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[4]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[5]  John A. Main,et al.  Design Impact of Piezoelectric Actuator Nonlinearities , 1997 .

[6]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[7]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[8]  Andrew J. Fleming,et al.  Precision current and charge amplifiers for driving highly capacitive piezoelectric loads , 2003 .

[9]  Chuen-Tsai Sun,et al.  Constructing hysteretic memory in neural networks , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Gi Sang Choi,et al.  Tracking position control of piezoelectric actuators for periodic reference inputs , 2002 .

[11]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[12]  Jordi Ortín,et al.  Hysteresis in shape-memory alloys , 2002 .

[13]  Willem L. De Koning,et al.  State-space analysis and identification for a class of hysteretic systems , 2001, Autom..

[14]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[15]  Ye-Hwa Chen,et al.  Piezomechanics using intelligent variable-structure control , 2001, IEEE Trans. Ind. Electron..

[16]  Ridha Ben Mrad,et al.  Dynamic modeling of hysteresis in piezoceramics , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[17]  Timothy N. Chang,et al.  Control of hysteresis in a monolithic nanoactuator , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[18]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .