Differential Evolution Algorithm with Ensemble of Parameters and Mutation and Crossover Strategies

Differential Evolution (DE) has attracted much attention recently as an effective approach for solving numerical optimization problems. However, the performance of DE is sensitive to the choice of the mutation and crossover strategies and their associated control parameters. Thus, to obtain optimal performance, time consuming parameter tuning is necessary. Different mutation and crossover strategies with different parameter settings can be appropriate during different stages of the evolution. In this paper, we propose a DE with an ensemble of mutation and crossover strategies and their associated control parameters known as EPSDE. In EPSDE, a pool of distinct mutation and crossover strategies along with a pool of values for each control parameter coexists throughout the evolution process and competes to produce offspring. The performance of EPSDE is evaluated on a set of 25 bound-constrained problems designed for Conference on Evolutionary Computation (CEC) 2005 and is compared with state-of-the-art algorithm.

[1]  Ponnuthurai Nagaratnam Suganthan,et al.  Fiber Bragg grating sensor array interrogation using differential evolution , 2008 .

[2]  Ponnuthurai N. Suganthan,et al.  Self-adaptive Differential Evolution with Modified Multi-Trajectory Search for CEC'2010 Large Scale Optimization , 2010, SEMCCO.

[3]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[4]  Ponnuthurai N. Suganthan,et al.  Self-adaptive differential evolution with multi-trajectory search for large-scale optimization , 2011, Soft Comput..

[5]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[6]  Amit Konar,et al.  Differential Evolution with Local Neighborhood , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[7]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[8]  Amit Konar,et al.  Two improved differential evolution schemes for faster global search , 2005, GECCO '05.

[9]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[10]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[11]  Joni-Kristian Kämäräinen,et al.  Differential Evolution Training Algorithm for Feed-Forward Neural Networks , 2003, Neural Processing Letters.

[12]  Arthur C. Sanderson,et al.  Adaptive Differential Evolution , 2009 .

[13]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[14]  Dana Petcu,et al.  Adaptive Pareto Differential Evolution and Its Parallelization , 2003, PPAM.

[15]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  Man Systems,et al.  1996 Biennial Conference of the North American Fuzzy Information Processing Society - NAFIPS , 1996 .

[17]  Xiaodong Li,et al.  Solving Rotated Multi-objective Optimization Problems Using Differential Evolution , 2004, Australian Conference on Artificial Intelligence.

[18]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[19]  R. W. Derksen,et al.  Differential Evolution in Aerodynamic Optimization , 1999 .

[20]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[21]  C. Coello,et al.  Cultured differential evolution for constrained optimization , 2006 .

[22]  Andries Petrus Engelbrecht,et al.  Self-adaptive Differential Evolution , 2005, CIS.

[23]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[24]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[25]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[26]  Xin Yao,et al.  Self-adaptive differential evolution with neighborhood search , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[27]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[28]  K. S. Swarup,et al.  Differential evolution approach for optimal reactive power dispatch , 2008, Appl. Soft Comput..

[29]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[30]  Rainer Storn,et al.  Differential Evolution-A simple evolution strategy for fast optimization , 1997 .

[31]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[32]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[33]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Rainer Storn,et al.  Differential evolution design of an IIR-filter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[35]  Josef Tvrdík Adaptation in differential evolution: A numerical comparison , 2009, Appl. Soft Comput..

[36]  Ujjwal Maulik,et al.  Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery , 2009, Pattern Recognit..

[37]  Amit Konar,et al.  Automatic image pixel clustering with an improved differential evolution , 2009, Appl. Soft Comput..

[38]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[39]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[40]  W. Marsden I and J , 2012 .