An efficient and conservative compact finite difference scheme for the coupled Gross-Pitaevskii equations describing spin-1 Bose-Einstein condensate

The coupled Gross–Pitaevskii system studied in this paper is an important mathematical model describing spin-1 Bose-Einstein condensate. We propose a linearized and decoupled compact finite difference scheme for the coupled Gross–Pitaevskii system, which means that only three tri-diagonal systems of linear algebraic equations at each time step need to be solved by using Thomas algorithm. New types of mass functional, magnetization functional and energy functional are defined by using a recursive relation to prove that the new scheme preserves the total mass, energy and magnetization in the discrete sense. Besides the standard energy method, we introduce an induction argument as well as a lifting technique to establish the optimal error estimate of the numerical solution without imposing any constraints on the grid ratios. The convergence order of the new scheme is of O(h4+τ2) in the L2 norm and H1 norm, respectively, with time step τ and mesh size h. Our analysis method can be used to high dimensional cases and other linearized finite difference schemes for the two- or three-dimensional nonlinear Schrodinger/Gross–Pitaevskii equations. Finally, numerical results are reported to test the theoretical results.

[1]  Ashvin Gopaul,et al.  Analysis of a Fourth-Order Scheme for a Three-Dimensional Convection-Diffusion Model Problem , 2006, SIAM J. Sci. Comput..

[2]  Wang Ting,et al.  Unconditional convergence of two conservative compact difference schemes for non-linear Schrdinger equation in one dimension , 2011 .

[3]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[4]  Su Yi,et al.  Bose-einstein condensation of trapped interacting spin-1 atoms , 2004 .

[5]  Wolfgang Ketterle,et al.  SPINOR CONDENSATES AND LIGHT SCATTERING FROM BOSE-EINSTEIN CONDENSATES , 2000, cond-mat/0005001.

[6]  Tingchun Wang,et al.  A linearized, decoupled, and energy‐preserving compact finite difference scheme for the coupled nonlinear Schrödinger equations , 2017 .

[7]  Xuan Zhao,et al.  A three level linearized compact difference scheme for the Cahn-Hilliard equation , 2011, Science China Mathematics.

[8]  Qianshun Chang,et al.  Multigrid and adaptive algorithm for solving the nonlinear Schrodinger equation , 1990 .

[9]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[10]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[11]  Weizhu Bao,et al.  Computing Ground States of Spin-1 Bose-Einstein Condensates by the Normalized Gradient Flow , 2007, SIAM J. Sci. Comput..

[12]  Xiaofei Zhao,et al.  Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions , 2018, Adv. Comput. Math..

[13]  Shusen Xie,et al.  Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation , 2009 .

[14]  Wenxian Zhang,et al.  An effective quasi-one-dimensional description of a spin-1 atomic condensate , 2005 .

[15]  Xuan Zhao,et al.  Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..

[16]  Weizhu Bao,et al.  ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS , 2005 .

[17]  Yuri S. Kivshar,et al.  Multicomponent gap solitons in spinor Bose-Einstein condensates , 2007 .

[18]  Shusen Xie,et al.  Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations , 2011 .

[19]  Tingchun Wang,et al.  Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions , 2013, J. Comput. Phys..

[20]  Yanzhi Zhang,et al.  Dynamical Laws of the Coupled Gross-Pitaevskii Equations for Spin-1 Bose-Einstein Condensates , 2010 .

[21]  Weizhu Bao Ground States and Dynamics of Multicomponent Bose-Einstein Condensates , 2004, Multiscale Model. Simul..

[22]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[23]  Xavier Antoine,et al.  Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates , 2014, J. Comput. Phys..

[24]  Murli M. Gupta,et al.  Convergence of Fourth Order Compact Difference Schemes for Three-Dimensional Convection-Diffusion Equations , 2007, SIAM J. Numer. Anal..

[25]  Hanquan Wang,et al.  A Mass and Magnetization Conservative and Energy-Diminishing Numerical Method for Computing Ground State of Spin-1 Bose-Einstein Condensates , 2007, SIAM J. Numer. Anal..

[26]  Christophe Besse,et al.  Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations , 2017, Comput. Phys. Commun..

[27]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[28]  Zhi-Zhong Sun,et al.  Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..

[29]  Tingchun Wang,et al.  Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension , 2014, J. Sci. Comput..

[30]  Li You,et al.  Mean field ground state of a spin-1 condensate in a magnetic field , 2003 .

[31]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[32]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .