Fuzzy-approximation-based adaptive control of the chaotic permanent magnet synchronous motor

This paper focus on the problem of position tracking control for the chaotic permanent magnet synchronous motor drive system with parameter uncertainties. Fuzzy logic systems are used to approximate the nonlinearities and the adaptive backstepping technique is employed to construct controllers. The proposed adaptive fuzzy controllers guarantee that the tracking error converges to a small neighborhood of the origin. Compared with the conventional backstepping, the designed fuzzy controllers’ structure is very simple. Simulation results show that the proposed control scheme can suppress chaos of PMSM and guarantee the perfect tracking performance even under the unknown parameters.

[1]  Yasuaki Kuroe,et al.  Analysis of bifurcation in power electronic induction motor drive systems , 1989, 20th Annual IEEE Power Electronics Specialists Conference.

[2]  Nejib Smaoui,et al.  Controlling chaos in the permanent magnet synchronous motor , 2009 .

[3]  Yuan-Xin Li,et al.  Adaptive fuzzy output-feedback control of uncertain SISO nonlinear systems , 2010 .

[4]  Guanrong Chen,et al.  Chaotifying a stable LTI system by tiny feedback control , 2000 .

[5]  X. Liu,et al.  Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[7]  Shaocheng Tong,et al.  Fuzzy adaptive backstepping robust control for SISO nonlinear system with dynamic uncertainties , 2009, Inf. Sci..

[8]  B. H. Wang,et al.  Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor , 2007 .

[9]  Ding Liu,et al.  Nonlinear feedback control of chaos in permanent magnet synchronous motor , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[11]  Bing Chen,et al.  Direct adaptive fuzzy control for nonlinear systems with time-varying delays , 2010, Inf. Sci..

[12]  Guanrong Chen,et al.  Bifurcations and chaos in a permanent-magnet synchronous motor , 2002 .

[13]  Yuanqing Xia,et al.  Robust Adaptive Sliding-Mode Control for Fuzzy Systems With Mismatched Uncertainties , 2010, IEEE Transactions on Fuzzy Systems.

[14]  Tzuu-Hseng S. Li,et al.  A new D-stability criterion of multiparameter singularly perturbed discrete systems , 2002 .

[15]  Ahmad Harb,et al.  Nonlinear chaos control in a permanent magnet reluctance machine , 2004 .

[16]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[17]  Frank L. Lewis,et al.  Robust backstepping control of induction motors using neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[18]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[19]  J. K. Hedrick,et al.  The use of sliding modes to simplify the backstepping control method , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[20]  Yanjun Liu,et al.  Adaptive robust fuzzy control for a class of uncertain chaotic systems , 2009 .

[21]  Darren M. Dawson,et al.  Integrator backstepping control of a brush DC motor turning a robotic load , 1994, IEEE Trans. Control. Syst. Technol..

[22]  Li Jie,et al.  DELAY FEEDBACK CONTROL OF CHAOS IN PERMANENT MAGNET SYNCHRONOUS MOTOR , 2003 .

[23]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[24]  Tieshan Li,et al.  Adaptive fuzzy control of uncertain MIMO non-linear systems in block-triangular forms , 2011 .

[25]  Jin Huang,et al.  Chaos control of permanent magnet synchronous motor , 2005, 2005 International Conference on Electrical Machines and Systems.