Upper bound limit analysis for finding interference effect of two nearby strip footings on sand

The ultimate bearing capacity of two closely spaced strip footings, placed on a cohesionless medium and loaded simultaneously to failure at the same magnitude of failure load, was determined by using an upper bound limit analysis. A logarithmic spiral radial shear zone, comprising of a number of triangular rigid blocks, was assumed to exist around each footing edge. The equations of the logarithmic spiral arcs were based on angles φL and φR rather than soil friction angle φ; the values of φL and φR were gradually varied in between 0 and φ. The ultimate bearing capacity was found to become maximum corresponding to a certain critical spacing between the footings. For spacing greater than the critical, the bearing capacity was found to decrease continuously with increase in the spacing. The extent of the spacing corresponding to which the ultimate bearing capacity becomes either maximum or equal to that of a single isolated footing increases with increase in φ. The results compare reasonably well with the available theoretical and experimental data.