Data-driven Inverse Optimization with Incomplete Information

In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent's objective function that best explains a historical sequence of signals and corresponding optimal actions. We formalize this inverse optimization problem as a distributionally robust program minimizing the worst-case risk that the {\em estimated} decision ({\em i.e.}, the decision implied by a particular candidate objective) differs from the agent's {\em actual} response to a random signal. We show that our framework offers attractive out-of-sample performance guarantees for different prediction errors and that the emerging inverse optimization problems can be reformulated as (or approximated by) tractable convex programs when the prediction error is measured in the space of objective values. A main strength of the proposed approach is that it naturally generalizes to situations where the observer has imperfect information, {\em e.g.}, when the agent's true objective function is not contained in the space of candidate objectives, when the agent suffers from bounded rationality or implementation errors, or when the observed signal-response pairs are corrupted by measurement noise.

[1]  Garud Iyengar,et al.  Inverse conic programming with applications , 2005, Oper. Res. Lett..

[2]  Vishal Gupta,et al.  Data-driven estimation in equilibrium using inverse optimization , 2013, Mathematical Programming.

[3]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[4]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[5]  Edward E. Leamer,et al.  Econometric Tools for Analyzing Market Outcomes , 2007 .

[6]  Ravindra K. Ahuja,et al.  Inverse Optimization , 2001, Oper. Res..

[7]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[8]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[9]  Scott M. Carr,et al.  The Inverse Newsvendor Problem: Choosing an Optimal Demand Portfolio for Capacitated Resources , 2000 .

[10]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[11]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[12]  Marvin D. Troutt,et al.  Behavioral Estimation of Mathematical Programming Objective Function Coefficients , 2006, Manag. Sci..

[13]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[14]  Stephen P. Boyd,et al.  Imputing a convex objective function , 2011, 2011 IEEE International Symposium on Intelligent Control.

[15]  Jörn Behrens,et al.  Inversion of seismic data using tomographical reconstruction techniques for investigations of laterally inhomogeneous media , 1984 .

[16]  C. L. Benkard,et al.  Estimating Dynamic Models of Imperfect Competition , 2004 .

[17]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[18]  Timothy C. Y. Chan,et al.  Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy , 2014, Oper. Res..

[19]  M. Sion On general minimax theorems , 1958 .

[20]  Yongpei Guan,et al.  The inverse optimal value problem , 2005, Math. Program..

[21]  C. Bottasso,et al.  A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system , 2006 .

[22]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[23]  Philippe L. Toint,et al.  On an instance of the inverse shortest paths problem , 1992, Math. Program..

[24]  Vishal Gupta,et al.  Inverse Optimization: A New Perspective on the Black-Litterman Model , 2012, Oper. Res..

[25]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[26]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[27]  Mark L Latash,et al.  An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension , 2010, Journal of mathematical biology.

[28]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..

[29]  Ravindra K. Ahuja,et al.  A Faster Algorithm for the Inverse Spanning Tree Problem , 2000, J. Algorithms.

[30]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[31]  Andrew J. Schaefer,et al.  Inverse integer programming , 2009, Optim. Lett..

[32]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[33]  Chengxian Xu,et al.  Inverse optimization for linearly constrained convex separable programming problems , 2010, Eur. J. Oper. Res..

[34]  Lizhi Wang,et al.  Cutting plane algorithms for the inverse mixed integer linear programming problem , 2009, Oper. Res. Lett..

[35]  András Faragó,et al.  Inverse Optimization in High-speed Networks , 2003, Discret. Appl. Math..

[36]  Dorit S. Hochbaum,et al.  Efficient Algorithms for the Inverse Spanning-Tree Problem , 2003, Oper. Res..