A Combined Nonlinear Programming Model and Kibria Method for Choosing Ridge Parameter Regression

Ridge regression solves multicollinearity problems by introducing a biasing parameter that is called ridge parameter; it shrinks the estimates as well as their standard errors in order to reach acceptable results. Many methods are available for estimating a ridge parameter. This article has considered some of these methods and also proposed a combined nonlinear programming model and Kibria method. A simulation study has been made to evaluate the performance of the proposed estimators based on the minimum mean squared error criterion. The simulation study indicates that under certain conditions the proposed estimators outperform the least squares (LS) estimators and other popular existing estimators. Moreover, the new proposed model is applied on dataset that suffers also from the presence of heteroscedastic errors.

[1]  Nityananda Sarkar,et al.  A new estimator combining the ridge regression and the restricted least squares methods of estimation , 1992 .

[2]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[3]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .

[4]  B. M. Golam Kibria,et al.  A Simulation Study of Some Ridge Regression Estimators under Different Distributional Assumptions , 2010, Commun. Stat. Simul. Comput..

[5]  Terri L. Moore,et al.  Regression Analysis by Example , 2001, Technometrics.

[6]  J. Lawless,et al.  A simulation study of ridge and other regression estimators , 1976 .

[7]  Ali S. Hadi,et al.  Regression Analysis by Example: Chatterjee/Regression , 2006 .

[8]  A. E. Hoerl,et al.  Ridge regression:some simulations , 1975 .

[9]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[10]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[11]  Ridge Estimation in Linear Models with Autocorrelated Errors , 2010 .

[12]  Ramadan M. Hamed,et al.  Selection of the Ridge Parameter Using Mathematical Programming , 2013, Commun. Stat. Simul. Comput..

[13]  G. Khalaf,et al.  Choosing Ridge Parameter for Regression Problems , 2005 .

[14]  Gerald J. Hahn,et al.  Applied Regression Analysis (2nd Ed.) , 2012 .

[15]  Hu Yang,et al.  Ridge Estimation to the Restricted Linear Model , 2007 .

[16]  Kristofer Månsson,et al.  On Some Ridge Regression Estimators: A Monte Carlo Simulation Study Under Different Error Variances , 2010 .

[17]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .