An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric

[1]  Pooi See Lee,et al.  Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles. , 2012, Nanoscale.

[2]  Dong Hee Park,et al.  Bistable Organic Memory Device with Gold Nanoparticles Embedded in a Conducting Poly(N-vinylcarbazole) Colloids Hybrid , 2011 .

[3]  Kean C. Aw,et al.  Electrical characteristics of poly(methylsilsesquioxane) thin films for non-volatile memory , 2011 .

[4]  C. Hwang,et al.  Nonvolatile memory transistors using solution-processed zinc-tin oxide and ferroelectric poly(vinylidene fluoride-trifluoroethylene) , 2010 .

[5]  W. Kowalsky,et al.  Transparent Electronics for See-Through AMOLED Displays , 2009, Journal of Display Technology.

[6]  K. Aw,et al.  ZnO as dielectric for optically transparent non-volatile memory , 2009 .

[7]  D Prime,et al.  Overview of organic memory devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  K. Aw,et al.  ZnO as a dielectric for organic thin film transistor-based non-volatile memory , 2009 .

[9]  D. Taylor,et al.  Floating-gate memory based on an organic metal-insulator-semiconductor capacitor. , 2009 .

[10]  Won-Tae Kim,et al.  Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer , 2009, Nanotechnology.

[11]  Jung Won Seo,et al.  Transparent resistive random access memory and its characteristics for nonvolatile resistive switching , 2008 .

[12]  C. J. Kim,et al.  Fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor’s channel layer , 2008 .

[13]  K. Im,et al.  Electrical characteristics of gold nanoparticle-embedded MIS capacitors with parylene gate dielectric , 2008 .

[14]  P. Théato,et al.  Synthesis of Processable Inorganic-Organic Hybrid Polymers Based on Poly(silsesquioxanes) : Grafting from Polymerization Using ATRP , 2008 .

[15]  Ananth Dodabalapur,et al.  Non‐Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Self‐Assembled Block Copolymer , 2008 .

[16]  T. Fuyuki,et al.  Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node , 2008 .

[17]  Fang-Chung Chen,et al.  Efficient Hole-Injection in Highly Transparent Organic Thin-Film Transistors , 2007 .

[18]  Wei Lin Leong,et al.  Charging phenomena in pentacene-gold nanoparticle memory device , 2007 .

[19]  Burag Yaglioglu,et al.  High-mobility amorphous In2O3-10 wt %ZnO thin film transistors , 2006 .

[20]  T. Riedl,et al.  Towards See‐Through Displays: Fully Transparent Thin‐Film Transistors Driving Transparent Organic Light‐Emitting Diodes , 2006 .

[21]  Shiping Zhu,et al.  Enabling gate dielectric design for all solution-processed, high-performance, flexible organic thin-film transistors. , 2006, Journal of the American Chemical Society.

[22]  K. Aw,et al.  Analysis of HSG-7000 silsesquioxane-based low-k dielectric hot plate curing using Raman spectroscopy , 2006 .

[23]  Antoine Kahn,et al.  Polarization at the gold/pentacene interface , 2005 .

[24]  Hidetoshi Yamamoto,et al.  Extremely-high-density carrier injection and transport over 12000A∕cm2 into organic thin films , 2005 .

[25]  J. Campbell Scott,et al.  Is There an Immortal Memory? , 2004, Science.

[26]  C. Pearson,et al.  Hybrid silicon-organic nanoparticle memory device , 2003 .

[27]  Panagiotis Dimitrakis,et al.  Langmuir−Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures , 2003 .

[28]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[29]  Ali Afzali,et al.  High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. , 2002, Journal of the American Chemical Society.

[30]  S. Sze,et al.  Characterization of porous silicate for ultra-low k dielectric application , 2002 .

[31]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[32]  Takao Ishida,et al.  Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements , 1993 .

[33]  Weston A. Anderson,et al.  Role of space charge in field emission cathodes , 1993 .

[34]  J. B. DuBow,et al.  The operation of the semiconductor‐insulator‐semiconductor solar cell: Experiment , 1979 .

[35]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  Albert Rose,et al.  Space-Charge-Limited Currents in Solids , 1955 .

[37]  Toh-Ming Lu,et al.  Metal-Dielectric Interfaces in Gigascale Electronics , 2012 .

[38]  D. Tsoukalas Metallic nanoparticles for application in electronic non-volatile memories , 2009 .

[39]  Mehmet Aydin,et al.  Electrical characterization of Al/MEH-PPV/p-Si Schottky diode by current-voltage and capacitance-voltage methods , 2007 .

[40]  Prashant V. Kamat,et al.  Photoinduced Charge Separation in a Fluorophore−Gold Nanoassembly , 2002 .

[41]  Jasprit Singh Semiconductor Devices: Basic Principles , 2000 .

[42]  M. Lampert,et al.  Current injection in solids , 1970 .