Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes

The forward current characteristics of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes are measured over the temperature range 90.5-434 K. The ideality factor and its temperature dependence is determined and found to decrease with increasing temperature according to the relationship n(T) = 11.4T^{-1/2} +0.444 to within ±4 percent. This is in agreement with the theoretical analysis of Strikha, who predicted a temperature dependence law between T-1and T^{-1/2} . The barrier height is determined from both the saturation current and the capacitance methods. A modification is made to the forward current expression, which results in good agreement between the values of the barrier height obtained from both methods over a wide temperature range. The barrier height is found to decrease with increasing temperature at a rate of 5.8 × 10 -4 V/K. Comparison with the dependence of the energy gap on temperature in GaAs suggests that the observed change in the barrier height is equal to that of E g .

[1]  D. Kahng Conduction properties of the Au-n-type Si Schottky barrier , 1962, IRE Transactions on Electron Devices.

[2]  H. G. White,et al.  GaP Surface‐Barrier Diodes , 1963 .

[3]  C. Mead,et al.  Barrier Height Studies on Metal-Semiconductor Systems , 1963 .

[4]  Carver A. Mead,et al.  Fermi Level Position at Semiconductor Surfaces , 1963 .

[5]  H. Heffner,et al.  Gallium Phosphide‐Gold Surface Barrier , 1964 .

[6]  F. A. Padovani,et al.  Experimental Study of Gold‐Gallium Arsenide Schottky Barriers , 1965 .

[7]  C. R. Crowell The Richardson constant for thermionic emission in Schottky barrier diodes , 1965 .

[8]  F. Padovani Graphical Determination of the Barrier Height and Excess Temperature of a Schottky Barrier , 1966 .

[9]  C. R. Crowell,et al.  Current transport in metal-semiconductor barriers , 1966 .

[10]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[11]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[12]  Forward Voltage—Current Characteristics of Metal—Silicon Schottky Barriers , 1967 .

[13]  A. Cowley,et al.  Shot noise in silicon Schottky barrier diodes , 1968 .

[14]  B. Smith The effect of surface treatment on gallium arsenide Schottky barrier diodes , 1968 .

[15]  E. H. Snow,et al.  Surface Effects on Metal-Silicon Contacts , 1968 .

[16]  M. Hirose,et al.  Transport Properties of Metal-Silicon Schottky Barriers , 1969 .

[17]  H. C. Casey,et al.  Temperature Dependence of the Energy Gap in GaAs and GaP , 1969 .

[18]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[19]  A. N. Saxena,et al.  Forward current-voltage characteristics of Schottky barriers on n-type silicon , 1969 .

[20]  C. R. Crowell,et al.  Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers , 1969 .

[21]  G. L. Pearson,et al.  Properties of GaP Schottky barrier diodes at elevated temperatures , 1969 .

[22]  RESEARCH NOTES: Possible sources of error in the deduction of semiconductor impurity concentrations from Schottky-barrier (C, V) characteristics , 1969 .

[23]  E H Rhoderick The physics of Schottky barriers , 1970 .

[24]  A. Cowley,et al.  Titanium-silicon Schottky barrier diodes , 1970 .

[25]  A. Yu,et al.  Electron tunneling and contact resistance of metal-silicon contact barriers , 1970 .

[26]  R. F. Broom,et al.  Doping dependence of the barrier height of palladium-silicide Schottky-diodes , 1971 .

[27]  J. D. Levine Schottky‐Barrier Anomalies and Interface States , 1971 .