Cellular Mechanisms for Direction Selectivity in the Retina

Direction selectivity represents a fundamental computation found across multiple sensory systems. In the mammalian visual system, direction selectivity appears first in the retina, where excitatory and inhibitory interneurons release neurotransmitter most rapidly during movement in a preferred direction. Two parallel sets of interneuron signals are integrated by a direction-selective ganglion cell, which creates a direction preference for both bright and dark moving objects. Direction selectivity of synaptic input becomes amplified by action potentials in the ganglion cell dendrites. Recent work has elucidated direction-selective mechanisms in inhibitory circuitry, but mechanisms in excitatory circuitry remain unexplained.

[1]  Seunghoon Lee,et al.  The Synaptic Mechanism of Direction Selectivity in Distal Processes of Starburst Amacrine Cells , 2006, Neuron.

[2]  F. Amthor,et al.  Morphology of on-off direction-selective ganglion cells in the rabbit retina , 1984, Brain Research.

[3]  R H Masland,et al.  The shape and arrangement of the cholinergic neurons in the rabbit retina , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  S. Bloomfield Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. , 1996, Journal of neurophysiology.

[5]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[6]  DI Vaney,et al.  Territorial organization of direction-selective ganglion cells in rabbit retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Joel L. Davis,et al.  Single neuron computation , 1992 .

[8]  Seunghoon Lee,et al.  A Developmental Switch in the Excitability and Function of the Starburst Network in the Mammalian Retina , 2004, Neuron.

[9]  S. Massey,et al.  Pharmacology of directionally selective ganglion cells in the rabbit retina. , 1997, Journal of neurophysiology.

[10]  M. Ariel,et al.  Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells , 1982, The Journal of physiology.

[11]  D. I. Vaney,et al.  ‘Coronate’ amacrine cells in the rabbit retina have the ‘starburst’ dendritic morphology , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[13]  S. Bloomfield,et al.  Electroanatomy of a unique amacrine cell in the rabbit retina. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Bloomfield,et al.  Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina. , 1992, Journal of neurophysiology.

[15]  E. V. Famiglietti,et al.  Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction , 1991, The Journal of comparative neurology.

[16]  F. Werblin,et al.  Directional Selectivity Is Formed at Multiple Levels by Laterally Offset Inhibition in the Rabbit Retina , 2005, Neuron.

[17]  Christopher Brandon,et al.  Cholinergic neurons in the rabbit retina: dendritic branching and ultrastructural connectivity , 1987, Brain Research.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[20]  R. Masland,et al.  Responses to light of starburst amacrine cells. , 1996, Journal of neurophysiology.

[21]  F. Amthor,et al.  Non-monotonic contrast behavior in directionally selective ganglion cells and evidence for its dependence on their GABAergic input , 1998, Visual Neuroscience.

[22]  Richard H. Masland,et al.  Retinal direction selectivity after targeted laser ablation of starburst amacrine cells , 1997, Nature.

[23]  N M Grzywacz,et al.  Necessity of acetylcholine for retinal directionally selective responses to drifting gratings in rabbit , 1998, The Journal of physiology.

[24]  P. Detwiler,et al.  A Dendrite-Autonomous Mechanism for Direction Selectivity in Retinal Starburst Amacrine Cells , 2007, PLoS biology.

[25]  R R Poznanski,et al.  Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: A functional interpretation of dendritic morphology , 1992, Bulletin of mathematical biology.

[26]  E. Cohen Voltage-gated calcium and sodium currents of starburst amacrine cells in the rabbit retina , 2001, Visual Neuroscience.

[27]  F. Amthor,et al.  Dendritic morphologies of retinal ganglion cells projecting to the lateral geniculate nucleus in the rabbit , 1990, The Journal of comparative neurology.

[28]  W. R. Taylor,et al.  Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina , 2002, The Journal of Neuroscience.

[29]  E V Famiglietti A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. , 2002, Visual neuroscience.

[30]  R. Stacy,et al.  Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina , 2003, The Journal of comparative neurology.

[31]  Seunghoon Lee,et al.  A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves , 2006, Nature Neuroscience.

[32]  H. Wässle,et al.  Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Andrey V Dmitriev,et al.  Dendritic compartmentalization of chloride cotransporters underlies directional responses of starburst amacrine cells in retina , 2006, Proceedings of the National Academy of Sciences.

[34]  C. L. Macqueen,et al.  The DAPI-3 amacrine cells of the rabbit retina , 1997, Visual Neuroscience.

[35]  G. Fain,et al.  Neurotransmitter receptors of starburst amacrine cells in rabbit retinal slices , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  L. Peichl,et al.  Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system , 1986, The Journal of comparative neurology.

[37]  N. Grzywacz,et al.  Compartmental localization of γ‐aminobutyric acid type B receptors in the cholinergic circuitry of the rabbit retina , 2005, The Journal of comparative neurology.

[38]  S. Mangel,et al.  Cation–chloride cotransporters mediate neural computation in the retina , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Jensen Effects of Ca2+ channel blockers on directional selectivity of rabbit retinal ganglion cells. , 1995, Journal of neurophysiology.

[40]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[41]  D. I. Vaney,et al.  Gap‐junction communication between subtypes of direction‐selective ganglion cells in the developing retina , 2005, The Journal of comparative neurology.

[42]  C. W. Oyster,et al.  The analysis of image motion by the rabbit retina , 1968, The Journal of physiology.

[43]  Lyle J. Borg-Graham,et al.  The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell , 2001, Nature Neuroscience.

[44]  R H Masland,et al.  Responses to acetylcholine of ganglion cells in an isolated mammalian retina. , 1976, Journal of neurophysiology.

[45]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[46]  H. Wässle,et al.  Receptive Field Properties of Starburst Cholinergic Amacrine Cells in the Rabbit Retina , 1995, The European journal of neuroscience.

[47]  Alexander Borst,et al.  Models of motion detection , 2000, Nature Neuroscience.

[48]  F. Werblin,et al.  Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells. , 2006, Journal of neurophysiology.

[49]  Neville N. Osborne,et al.  Neurobiology of the Inner Retina , 1989, NATO ASI Series.

[50]  F. Amthor,et al.  Spatial organization of retinal information about the direction of image motion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Pow,et al.  The dendritic architecture of the cholinergic plexus in the rabbit retina: Selective labeling by glycine accumulation in the presence of sarcosine , 2000, The Journal of comparative neurology.

[52]  R H Masland,et al.  The Nondiscriminating Zone of Directionally Selective Retinal Ganglion Cells: Comparison with Dendritic Structure and Implications for Mechanism , 1999, The Journal of Neuroscience.

[53]  Marla B. Feller,et al.  Spontaneous patterned retinal activity and the refinement of retinal projections , 2005, Progress in Neurobiology.

[54]  Wenzhi Sun,et al.  Dendritic relationship between starburst amacrine cells and direction‐selective ganglion cells in the rabbit retina , 2004, The Journal of physiology.

[55]  S. Massey,et al.  Effect of ON pathway blockade on directional selectivity in the rabbit retina. , 1995, Journal of neurophysiology.

[56]  Enrica Strettoi,et al.  Pattern of synaptic excitation and inhibition upon direction‐selective retinal ganglion cells , 2002, The Journal of comparative neurology.

[57]  Nicholas Oesch,et al.  Direction-Selective Dendritic Action Potentials in Rabbit Retina , 2005, Neuron.

[58]  R H Masland,et al.  Autoradiographic identification of acetylcholine in the rabbit retina , 1979, The Journal of cell biology.

[59]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[60]  R H Masland,et al.  Costratification of a population of bipolar cells with the direction‐selective circuitry of the rabbit retina , 1999, The Journal of comparative neurology.

[61]  F. Amthor,et al.  Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity , 2002, Visual Neuroscience.

[62]  D. Marshak,et al.  Wide-field ganglion cells in macaque retinas , 2005, Visual Neuroscience.

[63]  H. Young,et al.  GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina , 1988, Brain Research.

[64]  D. O'Malley,et al.  Co-release of acetylcholine and GABA by the starburst amacrine cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  J. Caldwell,et al.  Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. , 1978, The Journal of physiology.

[66]  Richard H Masland,et al.  Extreme Diversity among Amacrine Cells: Implications for Function , 1998, Neuron.

[67]  Bernardo Rudy,et al.  A Unique Role for Kv3 Voltage-Gated Potassium Channels in Starburst Amacrine Cell Signaling in Mouse Retina , 2004, The Journal of Neuroscience.

[68]  Richard H. Masland,et al.  Starburst Cells Nondirectionally Facilitate the Responses of Direction-Selective Retinal Ganglion Cells , 2002, The Journal of Neuroscience.

[69]  Wenzhi Sun,et al.  Identification of ON–OFF direction‐selective ganglion cells in the mouse retina , 2005, The Journal of physiology.

[70]  R H Masland,et al.  Receptive fields and dendritic structure of directionally selective retinal ganglion cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[72]  T. Velte,et al.  Spiking and nonspiking models of starburst amacrine cells in the rabbit retina , 1997, Visual Neuroscience.

[73]  M. Tachibana,et al.  A Key Role of Starburst Amacrine Cells in Originating Retinal Directional Selectivity and Optokinetic Eye Movement , 2001, Neuron.

[74]  M. Pu,et al.  Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit , 1990, The Journal of comparative neurology.

[75]  Eun-Jin Lee,et al.  Morphological analysis of the hyperpolarization‐activated cyclic nucleotide‐gated cation channel 1 (HCN1) immunoreactive bipolar cells in the rabbit retina , 2003, The Journal of comparative neurology.

[76]  J. Mills,et al.  Acetylcholine synthesis by displaced amacrine cells. , 1980, Science.

[77]  J. J. Tukker,et al.  Direction selectivity in a model of the starburst amacrine cell , 2004, Visual Neuroscience.

[78]  W. Levick,et al.  Properties of rarely encountered types of ganglion cells in the cat's retina and on overall classification , 1974, The Journal of physiology.

[79]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.