Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics

We introduce a new notion of embedding, called minimum-relaxation ordinal embedding, parallel to the standard notion of minimum-distortion (metric) embedding. In an ordinal embedding, it is the relative order between pairs of distances, and not the distances themselves, that must be preserved as much as possible. The (multiplicative) relaxation of an ordinal embedding is the maximum ratio between two distances whose relative order is inverted by the embedding. We develop several worst-case bounds and approximation algorithms on ordinal embedding. In particular, we establish that ordinal embedding has many qualitative differences from metric embedding, and capture the ordinal behavior of ultrametrics and shortest-path metrics of unweighted trees.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  J. Matousek,et al.  Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .

[3]  Yair Bartal,et al.  Dimension reduction for ultrametrics , 2004, SODA '04.

[4]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[5]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[6]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[7]  Mihai Badoiu,et al.  Approximation algorithms for low-distortion embeddings into low-dimensional spaces , 2005, SODA '05.

[8]  R. Shepard,et al.  Monotone mapping of similarities into a general metric space , 1974 .

[9]  Alain Guénoche,et al.  Trees and proximity representations , 1991, Wiley-Interscience series in discrete mathematics and optimization.

[10]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[11]  Johan Håstad,et al.  Fitting points on the real line and its application to RH mapping , 2003, J. Algorithms.

[12]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[13]  Madhu Sudan,et al.  A Geometric Approach to Betweenness , 1995, ESA.

[14]  Jaroslav Opatrny,et al.  Total Ordering Problem , 1979, SIAM J. Comput..

[15]  Jirí Matousek,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[16]  E. Holman The relation between hierarchical and euclidean models for psychological distances , 1972 .

[17]  Nathan Linial,et al.  Monotone maps, sphericity and bounded second eigenvalue , 2005, J. Comb. Theory, Ser. B.

[18]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[19]  Vojtech Rödl,et al.  Geometrical realization of set systems and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[20]  E. Harding The number of partitions of a set of N points in k dimensions induced by hyperplanes , 1967, Proceedings of the Edinburgh Mathematical Society.

[21]  H. Warren Lower bounds for approximation by nonlinear manifolds , 1968 .

[22]  Rahul Shah,et al.  On the Complexity of Ordinal Clustering , 2006, J. Classif..

[23]  Piotr Indyk,et al.  Low-Dimensional Embedding with Extra Information , 2006, Discret. Comput. Geom..

[24]  N. Alon Tools from higher algebra , 1996 .

[25]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[26]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[27]  J. Matou Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .

[28]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[29]  Mikkel Thorup,et al.  On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.

[30]  J. Matousek,et al.  On embedding expanders into ℓp spaces , 1997 .

[31]  Sampath Kannan,et al.  Efficient algorithms for inverting evolution , 1999, JACM.

[32]  Trevor F. Cox,et al.  Nonmetric multidimensional scaling , 2000 .

[33]  Piotr Indyk,et al.  Low-Dimensional Embedding with Extra Information , 2004, SCG '04.

[34]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[35]  Mihai Badoiu,et al.  Approximation algorithm for embedding metrics into a two-dimensional space , 2003, SODA '03.

[37]  Jirí Matousek,et al.  Low-Distortion Embeddings of Trees , 2001, J. Graph Algorithms Appl..

[38]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[39]  Anupam Gupta,et al.  Embedding Tree Metrics into Low-Dimensional Euclidean Spaces , 1999, STOC '99.