Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics
暂无分享,去创建一个
Noga Alon | Erik D. Demaine | Mohammad Taghi Hajiaghayi | Mihai Badoiu | Anastasios Sidiropoulos | Martin Farach-Colton | N. Alon | E. Demaine | M. Hajiaghayi | Mihai Badoiu | Anastasios Sidiropoulos | Martin Farach-Colton | Martín Farach-Colton
[1] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[2] J. Matousek,et al. Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .
[3] Yair Bartal,et al. Dimension reduction for ultrametrics , 2004, SODA '04.
[4] W. Torgerson. Multidimensional scaling: I. Theory and method , 1952 .
[5] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[6] Kenneth Ward Church,et al. Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..
[7] Mihai Badoiu,et al. Approximation algorithms for low-distortion embeddings into low-dimensional spaces , 2005, SODA '05.
[8] R. Shepard,et al. Monotone mapping of similarities into a general metric space , 1974 .
[9] Alain Guénoche,et al. Trees and proximity representations , 1991, Wiley-Interscience series in discrete mathematics and optimization.
[10] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[11] Johan Håstad,et al. Fitting points on the real line and its application to RH mapping , 2003, J. Algorithms.
[12] R. Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .
[13] Madhu Sudan,et al. A Geometric Approach to Betweenness , 1995, ESA.
[14] Jaroslav Opatrny,et al. Total Ordering Problem , 1979, SIAM J. Comput..
[15] Jirí Matousek,et al. Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[16] E. Holman. The relation between hierarchical and euclidean models for psychological distances , 1972 .
[17] Nathan Linial,et al. Monotone maps, sphericity and bounded second eigenvalue , 2005, J. Comb. Theory, Ser. B.
[18] Takuya Kon-no,et al. Transactions of the American Mathematical Society , 1996 .
[19] Vojtech Rödl,et al. Geometrical realization of set systems and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[20] E. Harding. The number of partitions of a set of N points in k dimensions induced by hyperplanes , 1967, Proceedings of the Edinburgh Mathematical Society.
[21] H. Warren. Lower bounds for approximation by nonlinear manifolds , 1968 .
[22] Rahul Shah,et al. On the Complexity of Ordinal Clustering , 2006, J. Classif..
[23] Piotr Indyk,et al. Low-Dimensional Embedding with Extra Information , 2006, Discret. Comput. Geom..
[24] N. Alon. Tools from higher algebra , 1996 .
[25] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[26] J. R. Lee,et al. Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.
[27] J. Matou. Bi-Lipschitz embeddings into low-dimensional Euclidean spaces , 1990 .
[28] J. Kruskal. Nonmetric multidimensional scaling: A numerical method , 1964 .
[29] Mikkel Thorup,et al. On the approximability of numerical taxonomy (fitting distances by tree metrics) , 1996, SODA '96.
[30] J. Matousek,et al. On embedding expanders into ℓp spaces , 1997 .
[31] Sampath Kannan,et al. Efficient algorithms for inverting evolution , 1999, JACM.
[32] Trevor F. Cox,et al. Nonmetric multidimensional scaling , 2000 .
[33] Piotr Indyk,et al. Low-Dimensional Embedding with Extra Information , 2004, SCG '04.
[34] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[35] Mihai Badoiu,et al. Approximation algorithm for embedding metrics into a two-dimensional space , 2003, SODA '03.
[37] Jirí Matousek,et al. Low-Distortion Embeddings of Trees , 2001, J. Graph Algorithms Appl..
[38] J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .
[39] Anupam Gupta,et al. Embedding Tree Metrics into Low-Dimensional Euclidean Spaces , 1999, STOC '99.