Improper interval edge colorings of graphs

A $k$-improper edge coloring of a graph $G$ is a mapping $\alpha:E(G)\longrightarrow \mathbb{N}$ such that at most $k$ edges of $G$ with a common endpoint have the same color. An improper edge coloring of a graph $G$ is called an improper interval edge coloring if the colors of the edges incident to each vertex of $G$ form an integral interval. In this paper we introduce and investigate a new notion, the interval coloring impropriety (or just impropriety) of a graph $G$ defined as the smallest $k$ such that $G$ has a $k$-improper interval edge coloring; we denote the smallest such $k$ by $\mu_{\mathrm{int}}(G)$. We prove upper bounds on $\mu_{\mathrm{int}}(G)$ for general graphs $G$ and for particular families such as bipartite, complete multipartite and outerplanar graphs; we also determine $\mu_{\mathrm{int}}(G)$ exactly for $G$ belonging to some particular classes of graphs. Furthermore, we provide several families of graphs with large impropriety; in particular, we prove that for each positive integer $k$, there exists a graph $G$ with $\mu_{\mathrm{int}}(G) =k$. Finally, for graphs with at least two vertices we prove a new upper bound on the number of colors used in an improper interval edge coloring.

[1]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[2]  Marek Kubale,et al.  Compact scheduling of zero-one time operations in multi-stage systems , 2004, Discret. Appl. Math..

[3]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[4]  R. Häggkvist,et al.  Bipartite graphs and their applications , 1998 .

[5]  D. Wood,et al.  Defective and Clustered Graph Colouring , 2018, 1803.07694.

[6]  Denis Hanson,et al.  On interval colourings of bi-regular bipartite graphs , 1998, Ars Comb..

[7]  Wayne Goddard,et al.  Coloring with defect , 1997, SODA '97.

[8]  Armen S. Asratian,et al.  Interval colorings of edges of a multigraph , 2014, ArXiv.

[9]  G. Chartrand,et al.  A generalization of the chromatic number , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Qiongxiang Huang,et al.  Consecutive edge-coloring of the generalized theta-graph , 2007, Discret. Appl. Math..

[11]  K. Giuro On the deficiency of bipartite graphs , 2003 .

[12]  Carl Johan Casselgren,et al.  On Interval Edge Colorings of Biregular Bipartite Graphs With Small Vertex Degrees , 2015, J. Graph Theory.

[13]  Petros A. Petrosyan,et al.  Interval edge colorings of some products of graphs , 2009, Discuss. Math. Graph Theory.

[14]  Armen S. Asratian,et al.  Investigation on Interval Edge-Colorings of Graphs , 1994, J. Comb. Theory, Ser. B.

[15]  Petros A. Petrosyan,et al.  Interval Non‐edge‐Colorable Bipartite Graphs and Multigraphs , 2013, J. Graph Theory.

[16]  Raffi R. Kamalian Interval colorings of complete bipartite graphs and trees , 2013, ArXiv.

[17]  D. de Werra,et al.  Graph Coloring Problems , 2013 .

[18]  Austin Foster Interval Edge-Colorings of Graphs , 2016 .

[20]  Stanley Fiorini On the chromatic index of outerplanar graphs , 1975 .

[21]  Marek Kubale,et al.  On the Deficiency of Bipartite Graphs , 1999, Discret. Appl. Math..

[22]  Marek Kubale,et al.  Consecutive colorings of the edges of general graphs , 2001, Discret. Math..